These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9171432)

  • 61. DNA binding of the Bordetella pertussis H1 homolog alters in vitro DNA flexibility.
    Zu T; Goyard S; Rappuoli R; Scarlato V
    J Bacteriol; 1996 May; 178(10):2982-5. PubMed ID: 8631692
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Zn
    Raksanoh V; Shank L; Prangkio P; Yentongchai M; Sakdee S; Imtong C; Angsuthanasombat C
    Biochem Biophys Res Commun; 2017 Apr; 485(4):720-724. PubMed ID: 28238785
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulatory factors of Bordetella pertussis affecting virulence gene expression.
    König J; Bock A; Perraud AL; Fuchs TM; Beier D; Gross R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):197-203. PubMed ID: 11931547
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Response of the bvg regulon of Bordetella pertussis to different temperatures and short-term temperature shifts.
    Prugnola A; Aricò B; Manetti R; Rappuoli R; Scarlato V
    Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2529-34. PubMed ID: 7582012
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Identification of a Bordetella pertussis regulatory factor required for transcription of the pertussis toxin operon in Escherichia coli.
    DeShazer D; Wood GE; Friedman RL
    J Bacteriol; 1995 Jul; 177(13):3801-7. PubMed ID: 7601846
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Strong inhibition of fimbrial 3 subunit gene transcription by a novel downstream repressive element in Bordetella pertussis.
    Chen Q; Boulanger A; Hinton DM; Stibitz S
    Mol Microbiol; 2014 Aug; 93(4):748-58. PubMed ID: 24963821
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular cloning and analysis of P. 69, a vir-controlled protein from Bordetella pertussis.
    Charles IG; Dougan G; Pickard D; Charfield S; Smith M; Novotny P; Fairweather N
    Tokai J Exp Clin Med; 1988; 13 Suppl():227-34. PubMed ID: 2908524
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Specificity through flexibility.
    Zuber P
    Nat Struct Biol; 2000 Dec; 7(12):1079-81. PubMed ID: 11101881
    [No Abstract]   [Full Text] [Related]  

  • 69. Newly identified genes involved in the signal transduction of Escherichia coli K-12.
    Utsumi R; Katayama S; Taniguchi M; Horie T; Ikeda M; Igaki S; Nakagawa H; Miwa A; Tanabe H; Noda M
    Gene; 1994 Mar; 140(1):73-7. PubMed ID: 8125343
    [TBL] [Abstract][Full Text] [Related]  

  • 70. DNA topology affects transcriptional regulation of the pertussis toxin gene of Bordetella pertussis in Escherichia coli and in vitro.
    Scarlato V; Aricò B; Rappuoli R
    J Bacteriol; 1993 Aug; 175(15):4764-71. PubMed ID: 8393006
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Bordetella bhu locus is required for heme iron utilization.
    Vanderpool CK; Armstrong SK
    J Bacteriol; 2001 Jul; 183(14):4278-87. PubMed ID: 11418569
    [TBL] [Abstract][Full Text] [Related]  

  • 72. BvgAS is sufficient for activation of the Bordetella pertussis ptx locus in Escherichia coli.
    Uhl MA; Miller JF
    J Bacteriol; 1995 Nov; 177(22):6477-85. PubMed ID: 7592423
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The BvgS/BvgA phosphorelay system of pathogenic Bordetellae: structure, function and evolution.
    Beier D; Gross R
    Adv Exp Med Biol; 2008; 631():149-60. PubMed ID: 18792687
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cloning and sequence analysis of the evgAS genes involved in signal transduction of Escherichia coli K-12.
    Utsumi R; Katayama S; Ikeda M; Igaki S; Nakagawa H; Miwa A; Taniguchi M; Noda M
    Nucleic Acids Symp Ser; 1992; (27):149-50. PubMed ID: 1289796
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Analysis of separate isolates of Bordetella pertussis repeated DNA sequences.
    McPheat WL; Hanson JH; Livey I; Robertson JS
    J Gen Microbiol; 1989 Jun; 135(6):1515-20. PubMed ID: 2559151
    [TBL] [Abstract][Full Text] [Related]  

  • 77. GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution.
    Suvorova IA; Korostelev YD; Gelfand MS
    PLoS One; 2015; 10(7):e0132618. PubMed ID: 26151451
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Conformational change of the
    Kim D; Tracey J; Becerra Flores M; Chaudhry K; Nasim R; Correa-Medina A; Knipling L; Chen Q; Stibitz S; Jenkins LMM; Moon K; Cardozo T; Hinton DM
    Comput Struct Biotechnol J; 2022; 20():6431-6442. PubMed ID: 36467586
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Repeated sequences isolated from Bordetella pertussis induce DNA rearrangements and deletions at high frequency.
    Kirillov MYu ; Shumakov YuL ; Nechaeva EV; Butcher S; Sinjashina L; Runeberg K; Romantschuk M; Karataev GI
    Gene; 1995 Dec; 166(1):111-6. PubMed ID: 8529873
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structural mechanism for regulation of DNA binding of BpsR, a Bordetella regulator of biofilm formation, by 6-hydroxynicotinic acid.
    Booth WT; Davis RR; Deora R; Hollis T
    PLoS One; 2019; 14(11):e0223387. PubMed ID: 31697703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.