BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9171890)

  • 21. Analysis of the binding of the Fab fragment of monoclonal antibody NC10 to influenza virus N9 neuraminidase from tern and whale using the BIAcore biosensor: effect of immobilization level and flow rate on kinetic analysis.
    Kortt AA; Nice E; Gruen LC
    Anal Biochem; 1999 Aug; 273(1):133-41. PubMed ID: 10452809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression and purification of monospecific and bispecific recombinant antibody fragments derived from antibodies that block the CD80/CD86-CD28 costimulatory pathway.
    Dincq S; Bosman F; Buyse MA; Degrieck R; Celis L; de Boer M; Van Doorsselaere V; Sablon E
    Protein Expr Purif; 2001 Jun; 22(1):11-24. PubMed ID: 11388794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of scFv fragment reactivity with target antigens in binding assays following mixing with anti-tag monoclonal antibodies.
    Wang X; Campoli M; Ko E; Luo W; Ferrone S
    J Immunol Methods; 2004 Nov; 294(1-2):23-35. PubMed ID: 15604013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of the autologous red cell agglutination test.
    Catimel B; Wilson KM; Kemp BE
    J Immunol Methods; 1993 Oct; 165(2):183-92. PubMed ID: 8228269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Affinity maturation of recombinant antibodies using E. coli mutator cells.
    Irving RA; Kortt AA; Hudson PJ
    Immunotechnology; 1996 Jun; 2(2):127-43. PubMed ID: 9373321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the productivity of single-chain Fv antibody against c-Met by rearranging the order of its variable domains.
    Kim YJ; Neelamegam R; Heo MA; Edwardraja S; Paik HJ; Lee SG
    J Microbiol Biotechnol; 2008 Jun; 18(6):1186-90. PubMed ID: 18600066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient construction of a diabody using a refolding system: anti-carcinoembryonic antigen recombinant antibody fragment.
    Asano R; Kudo T; Nishimura Y; Makabe K; Hayashi H; Suzuki M; Tsumoto K; Kumagai I
    J Biochem; 2002 Dec; 132(6):903-9. PubMed ID: 12473192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antigen binding and stability properties of non-covalently linked anti-CD22 single-chain Fv dimers.
    Arndt MA; Krauss J; Rybak SM
    FEBS Lett; 2004 Dec; 578(3):257-61. PubMed ID: 15589829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection.
    Schier R; Bye J; Apell G; McCall A; Adams GP; Malmqvist M; Weiner LM; Marks JD
    J Mol Biol; 1996 Jan; 255(1):28-43. PubMed ID: 8568873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and application of diabodies, triabodies and tetrabodies for cancer targeting.
    Todorovska A; Roovers RC; Dolezal O; Kortt AA; Hoogenboom HR; Hudson PJ
    J Immunol Methods; 2001 Feb; 248(1-2):47-66. PubMed ID: 11223068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recombinant single-chain antibody peptide conjugates expressed in Escherichia coli for the rapid diagnosis of HIV.
    Lilley GG; Dolezal O; Hillyard CJ; Bernard C; Hudson PJ
    J Immunol Methods; 1994 May; 171(2):211-26. PubMed ID: 7515087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment.
    Arndt KM; Müller KM; Plückthun A
    Biochemistry; 1998 Sep; 37(37):12918-26. PubMed ID: 9737871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly.
    Wörn A; Plückthun A
    FEBS Lett; 1998 May; 427(3):357-61. PubMed ID: 9637257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Humanization of a highly stable single-chain antibody by structure-based antigen-binding site grafting.
    Villani ME; Morea V; Consalvi V; Chiaraluce R; Desiderio A; Benvenuto E; Donini M
    Mol Immunol; 2008 May; 45(9):2474-85. PubMed ID: 18313757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production and characterization of bispecific single-chain antibody fragments.
    De Jonge J; Brissinck J; Heirman C; Demanet C; Leo O; Moser M; Thielemans K
    Mol Immunol; 1995 Dec; 32(17-18):1405-12. PubMed ID: 8643110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IgM secretory tailpiece drives multimerisation of bivalent scFv fragments in eukaryotic cells.
    Olafsen T; Rasmussen IB; Norderhaug L; Bruland OS; Sandlie I
    Immunotechnology; 1998 Oct; 4(2):141-53. PubMed ID: 9853955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monospecific bivalent scFv-SH: effects of linker length and location of an engineered cysteine on production, antigen binding activity and free SH accessibility.
    Albrecht H; Denardo GL; Denardo SJ
    J Immunol Methods; 2006 Mar; 310(1-2):100-16. PubMed ID: 16499921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of variable domain orientation and arrangement on the antigen-binding activity of a recombinant human bispecific diabody.
    Lu D; Jimenez X; Witte L; Zhu Z
    Biochem Biophys Res Commun; 2004 May; 318(2):507-13. PubMed ID: 15120630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Diabodies": small bivalent and bispecific antibody fragments.
    Holliger P; Prospero T; Winter G
    Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6444-8. PubMed ID: 8341653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitogenic properties of a bispecific single-chain Fv-Ig fusion generated from CD2-specific mAb to distinct epitopes.
    Connelly RJ; Hayden MS; Scholler JK; Tsu TT; Dupont B; Ledbetter JA; Kanner SB
    Int Immunol; 1998 Dec; 10(12):1863-72. PubMed ID: 9885907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.