BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9172674)

  • 21. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of the electron transfer between the tetraheme subunit and the special pair of the photosynthetic reaction center using a microstate description.
    Becker T; Ullmann RT; Ullmann GM
    J Phys Chem B; 2007 Mar; 111(11):2957-68. PubMed ID: 17388409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A perspective of biological supramolecular electron transfer.
    Ramasarma T
    Indian J Biochem Biophys; 1999 Dec; 36(6):379-97. PubMed ID: 10844992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers.
    de Groot MT; Evers TH; Merkx M; Koper MT
    Langmuir; 2007 Jan; 23(2):729-36. PubMed ID: 17209627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4).
    Monari S; Battistuzzi G; Borsari M; Di Rocco G; Martini L; Ranieri A; Sola M
    J Phys Chem B; 2009 Oct; 113(41):13645-53. PubMed ID: 19764800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photochemically induced electron transfer.
    Bellelli A; Brunori M; Brzezinski P; Wilson MT
    Methods; 2001 Jun; 24(2):139-52. PubMed ID: 11384189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and redox properties of cytochrome c552 from Thermus thermophilus adsorbed on different self-assembled thiol monolayers, used to model the chemical environment of the redox partner.
    Bernad S; Soulimane T; Mehkalif Z; Lecomte S
    Biopolymers; 2006 Apr; 81(5):407-18. PubMed ID: 16365847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum mechanical investigations of heme structure and vibrational spectra: effects of conformation, oxidation state, and electric field.
    Mitin AV; Kubicki JD
    Langmuir; 2009 Jan; 25(1):548-54. PubMed ID: 19063621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tyrosine as a redox-active center in electron transfer to ferryl heme in globins.
    Reeder BJ; Cutruzzola F; Bigotti MG; Hider RC; Wilson MT
    Free Radic Biol Med; 2008 Feb; 44(3):274-83. PubMed ID: 18215736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.
    Khvostichenko D; Choi A; Boulatov R
    J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemistry of unfolded cytochrome c in neutral and acidic urea solutions.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    J Am Chem Soc; 2005 May; 127(20):7638-46. PubMed ID: 15898816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c.
    Shafiey H; Ghourchian H; Mogharrab N
    Biophys Chem; 2008 May; 134(3):225-31. PubMed ID: 18325656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A role for the protein in internal electron transfer to the catalytic center of cytochrome c oxidase.
    Antalik M; Jancura D; Palmer G; Fabian M
    Biochemistry; 2005 Nov; 44(45):14881-9. PubMed ID: 16274235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic structure contributions to electron-transfer reactivity in iron-sulfur active sites: 3. Kinetics of electron transfer.
    Kennepohl P; Solomon EI
    Inorg Chem; 2003 Feb; 42(3):696-708. PubMed ID: 12562183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri.
    Raffalt AC; Schmidt L; Christensen HE; Chi Q; Ulstrup J
    J Inorg Biochem; 2009 May; 103(5):717-22. PubMed ID: 19217165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations.
    Soares CM; Martel PJ; Mendes J; Carrondo MA
    Biophys J; 1998 Apr; 74(4):1708-21. PubMed ID: 9545034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformation of the c552:aa3 electron transfer complex in Paracoccus denitrificans studied by EPR on oriented samples.
    Lipowski G; Liebl U; Guigliarelli B; Nitschke W; Schoepp-Cothenet B
    FEBS Lett; 2006 Oct; 580(25):5988-92. PubMed ID: 17052714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pulse radiolysis studies on cytochrome cd1 nitrite reductase from Thiosphaera pantotropha: evidence for a fast intramolecular electron transfer from c-heme to d1-heme.
    Kobayashi K; Koppenhöfer A; Ferguson SJ; Tagawa S
    Biochemistry; 1997 Nov; 36(44):13611-6. PubMed ID: 9354630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mobile polaron solutions and nonlinear electron transfer in helical protein models.
    Hennig D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041908. PubMed ID: 11690053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction of hydroquinone with hematite; II. Calculated electron-transfer rates and comparison to the reductive dissolution rate.
    Stack AG; Rosso KM; Smith DM; Eggleston CM
    J Colloid Interface Sci; 2004 Jun; 274(2):442-50. PubMed ID: 15144815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.