BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 9172733)

  • 1. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy.
    Melchers B; Knapp EW; Parak F; Cordone L; Cupane A; Leone M
    Biophys J; 1996 May; 70(5):2092-9. PubMed ID: 9172733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal fluctuations between conformational substates of the Fe(2+)-HisF8 linkage in deoxymyoglobin probed by the Raman active Fe-N epsilon (HisF8) stretching vibration.
    Gilch H; Dreybrodt W; Schweitzer-Stenner R
    Biophys J; 1995 Jul; 69(1):214-27. PubMed ID: 7669899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations of optical line shapes and kinetic hole burning in myoglobin.
    Srajer V; Champion PM
    Biochemistry; 1991 Jul; 30(30):7390-402. PubMed ID: 1854744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure effects on the proximal heme pocket in myoglobin probed by Raman and near-infrared absorption spectroscopy.
    Galkin O; Buchter S; Tabirian A; Schulte A
    Biophys J; 1997 Nov; 73(5):2752-63. PubMed ID: 9370469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe vibrational spectroscopy of myoglobin and cytochrome f.
    Adams KL; Tsoi S; Yan J; Durbin SM; Ramdas AK; Cramer WA; Sturhahn W; Alp EE; Schulz C
    J Phys Chem B; 2006 Jan; 110(1):530-6. PubMed ID: 16471565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman enhancement of phenyl ring vibrational modes in phenyl iron complex of myoglobin.
    Liu HH; Lin SH; Yu NT
    Biophys J; 1990 Apr; 57(4):851-6. PubMed ID: 2344468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation of carboxy-myoglobin embedded in a trehalose-water matrix.
    Cottone G; Cordone L; Ciccotti G
    Biophys J; 2001 Feb; 80(2):931-8. PubMed ID: 11159460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.
    Yoo BK; Kruglik SG; Lamarre I; Martin JL; Negrerie M
    J Phys Chem B; 2012 Apr; 116(13):4106-14. PubMed ID: 22394099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Fe(2+)-His(F8) Raman band shape of deoxymyoglobin reveals taxonomic conformational substates of the proximal linkage.
    Schott J; Dreybrodt W; Schweitzer-Stenner R
    Biophys J; 2001 Sep; 81(3):1624-31. PubMed ID: 11509375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear forward scattering of synchrotron radiation by deoxymyoglobin.
    Keppler C; Achterhold K; Ostermann A; van Bürck U; Chumakov AI; Rüffer R; Sturhahn W; Alp EE; Parak FG
    Eur Biophys J; 2000; 29(2):146-52. PubMed ID: 10877024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex.
    Chance MR; Miller LM; Fischetti RF; Scheuring E; Huang WX; Sclavi B; Hai Y; Sullivan M
    Biochemistry; 1996 Jul; 35(28):9014-23. PubMed ID: 8703904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme-solvent coupling: a Mössbauer study of myoglobin in sucrose.
    Lichtenegger H; Doster W; Kleinert T; Birk A; Sepiol B; Vogl G
    Biophys J; 1999 Jan; 76(1 Pt 1):414-22. PubMed ID: 9876153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A water network within a protein: temperature-dependent water ligation in H64V-metmyoglobin and relaxation to deoxymyoglobin.
    Engler N; Prusakov V; Ostermann A; Parak FG
    Eur Biophys J; 2003 Feb; 31(8):595-607. PubMed ID: 12582819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Nuclear Resonance Vibrational Spectroscopic Study of Oxy Myoglobins Reconstituted with Chemically Modified Heme Cofactors: Insights into the Fe-O
    Ohta T; Shibata T; Kobayashi Y; Yoda Y; Ogura T; Neya S; Suzuki A; Seto M; Yamamoto Y
    Biochemistry; 2018 Dec; 57(48):6649-6652. PubMed ID: 30422640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein dynamics in an intermediate state of myoglobin: optical absorption, resonance Raman spectroscopy, and x-ray structure analysis.
    Engler N; Ostermann A; Gassmann A; Lamb DC; Prusakov VE; Schott J; Schweitzer-Stenner R; Parak FG
    Biophys J; 2000 Apr; 78(4):2081-92. PubMed ID: 10733986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear resonance vibrational spectroscopy--NRVS.
    Scheidt WR; Durbin SM; Sage JT
    J Inorg Biochem; 2005 Jan; 99(1):60-71. PubMed ID: 15598492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-dynamics-function relationships in Asian elephant (Elephas maximus) myoglobin. An optical spectroscopy and flash photolysis study on functionally important motions.
    Cupane A; Leone M; Vitrano E; Cordone L; Hiltpold UR; Winterhalter KH; Yu W; Di Iorio EE
    Biophys J; 1993 Dec; 65(6):2461-72. PubMed ID: 8312484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved resonance Raman study on ultrafast structural relaxation and vibrational cooling of photodissociated carbonmonoxy myoglobin.
    Kitagawa T; Haruta N; Mizutani Y
    Biopolymers; 2002; 67(4-5):207-13. PubMed ID: 12012433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mössbauer spectroscopy on nonequilibrium states of myoglobin: a study of r-t relaxation.
    Prusakov VE; Steyer J; Parak FG
    Biophys J; 1995 Jun; 68(6):2524-30. PubMed ID: 7647255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.