These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9173927)

  • 1. Developmental features of human striatal tissue transplanted in a rat model of Huntington's disease.
    Grasbon-Frodl EM; Nakao N; Lindvall O; Brundin P
    Neurobiol Dis; 1997; 3(4):299-311. PubMed ID: 9173927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic development of the human embryonic striatal primordium: a study of cultured and grafted neurons from the lateral and medial ganglionic eminences.
    Grasbon-Frodl EM; Nakao N; Lindvall O; Brundin P
    Neuroscience; 1996 Jul; 73(1):171-83. PubMed ID: 8783240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryonic donor age and dissection influences striatal graft development and functional integration in a rodent model of Huntington's disease.
    Watts C; Brasted PJ; Dunnett SB
    Exp Neurol; 2000 May; 163(1):85-97. PubMed ID: 10785447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington's disease.
    Nakao N; Grasbon-Frodl EM; Widner H; Brundin P
    Neuroscience; 1996 Oct; 74(4):959-70. PubMed ID: 8895865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence.
    Deacon TW; Pakzaban P; Isacson O
    Brain Res; 1994 Dec; 668(1-2):211-9. PubMed ID: 7704606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The morphology, integration, and functional efficacy of striatal grafts differ between cell suspensions and tissue pieces.
    Watts C; Brasted PJ; Dunnett SB
    Cell Transplant; 2000; 9(3):395-407. PubMed ID: 10972338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention.
    Watts C; Dunnett SB
    J Neurosurg; 1998 Aug; 89(2):267-74. PubMed ID: 9688122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive migration and target innervation by striatal precursors after grafting into the neonatal striatum.
    Olsson M; Bentlage C; Wictorin K; Campbell K; Björklund A
    Neuroscience; 1997 Jul; 79(1):57-78. PubMed ID: 9178865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume and differentiation of striatal grafts in rats: relationship to the number of cells implanted.
    Watts C; McNamara IR; Dunnett SB
    Cell Transplant; 2000; 9(1):65-72. PubMed ID: 10784068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease.
    Döbrössy MD; Dunnett SB
    Neuroscience; 2005; 132(3):543-52. PubMed ID: 15837116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caspase inhibition increases embryonic striatal graft survival.
    Mundt-Petersen U; Petersén A; Emgård M; Dunnett SB; Brundin P
    Exp Neurol; 2000 Jul; 164(1):112-20. PubMed ID: 10877921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hibernated human fetal striatal tissue: successful transplantation in a rat model of Huntington's disease.
    Hurelbrink CB; Armstrong RJ; Barker RA; Dunnett SB; Rosser AE
    Cell Transplant; 2000; 9(6):743-9. PubMed ID: 11202561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased proportion of acetylcholinesterase-rich zones and improved morphological integration in host striatum of fetal grafts derived from the lateral but not the medial ganglionic eminence.
    Pakzaban P; Deacon TW; Burns LH; Isacson O
    Exp Brain Res; 1993; 97(1):13-22. PubMed ID: 7907548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Striatal grafts in a rat model of Huntington's disease: time course comparison of MRI and histology.
    Guzman R; Meyer M; Lövblad KO; Ozdoba C; Schroth G; Seiler RW; Widmer HR
    Exp Neurol; 1999 Mar; 156(1):180-90. PubMed ID: 10192789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural grafting in a rat model of Huntington's disease: striosomal-like organization of striatal grafts as revealed by acetylcholinesterase histochemistry, immunocytochemistry and receptor autoradiography.
    Isacson O; Dawbarn D; Brundin P; Gage FH; Emson PC; Björklund A
    Neuroscience; 1987 Aug; 22(2):481-97. PubMed ID: 2823174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striatal allografts in patients with Huntington's disease: impact of diminished astrocytes and vascularization on graft viability.
    Cisbani G; Freeman TB; Soulet D; Saint-Pierre M; Gagnon D; Parent M; Hauser RA; Barker RA; Cicchetti F
    Brain; 2013 Feb; 136(Pt 2):433-43. PubMed ID: 23378216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GDNF is important for striatal organization and maintenance of dopamine neurons grown in the presence of the striatum.
    Chermenina M; Schouten P; Nevalainen N; Johansson F; Orädd G; Strömberg I
    Neuroscience; 2014 Jun; 270():1-11. PubMed ID: 24726488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny of human striatal DARPP-32 neurons in fetuses and following xenografting to the adult rat brain.
    Naimi S; Jeny R; Hantraye P; Peschanski M; Riche D
    Exp Neurol; 1996 Jan; 137(1):15-25. PubMed ID: 8566206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation.
    Capetian P; Knoth R; Maciaczyk J; Pantazis G; Ditter M; Bokla L; Landwehrmeyer GB; Volk B; Nikkhah G
    Neuroscience; 2009 May; 160(3):661-75. PubMed ID: 19254752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of embryonic donor age and dissection on the DARPP-32 content of cell suspensions used for intrastriatal transplantation.
    Watts C; Dunnett SB; Rosser AE
    Exp Neurol; 1997 Nov; 148(1):271-80. PubMed ID: 9398469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.