BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9174323)

  • 21. Pulmonary resistance in dogs: a comparison of xenon with nitrous oxide.
    Zhang P; Ohara A; Mashimo T; Imanaka H; Uchiyama A; Yoshiya I
    Can J Anaesth; 1995 Jun; 42(6):547-53. PubMed ID: 7628038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrous oxide and the inhibitory synaptic transmission in rat dorsal horn neurons.
    Georgiev SK; Baba H; Kohno T
    Eur J Pain; 2010 Jan; 14(1):17-22. PubMed ID: 19261495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Inhibitory action of sensory transmission by inhalational anesthetics in the spinal cord].
    Yamauchi M; Omote K; Namiki A; Collins JG
    Masui; 2003 Mar; 52(3):240-50. PubMed ID: 12703065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The analgesic action of nitrous oxide is dependent on the release of norepinephrine in the dorsal horn of the spinal cord.
    Zhang C; Davies MF; Guo TZ; Maze M
    Anesthesiology; 1999 Nov; 91(5):1401-7. PubMed ID: 10551592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhaling nitrous oxide or xenon does not influence bowel wall energy balance during porcine bowel obstruction.
    Pittner A; Nalos M; Theisen M; Ploner F; Brückner UB; Georgieff M; Radermacher P; Fröba G
    Anesth Analg; 2002 Jun; 94(6):1510-6, table of contents. PubMed ID: 12032017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of xenon on central nervous system electrical activity during sevoflurane anaesthesia in cats: comparison with nitrous oxide.
    Utsumi J; Adachi T; Kurata J; Miyazaki Y; Shibata M; Murakawa M; Arai T; Mori K
    Br J Anaesth; 1998 May; 80(5):628-33. PubMed ID: 9691867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The midlatency auditory evoked potentials predict responsiveness to verbal commands in patients emerging from anesthesia with xenon, isoflurane, and sevoflurane but not with nitrous oxide.
    Goto T; Nakata Y; Saito H; Ishiguro Y; Niimi Y; Morita S
    Anesthesiology; 2001 May; 94(5):782-9. PubMed ID: 11388528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xenon inhalation increases norepinephrine release from the anterior and posterior hypothalamus in rats.
    Yoshida H; Kushikata T; Kubota T; Hirota K; Ishihara H; Matsuki A
    Can J Anaesth; 2001; 48(7):651-5. PubMed ID: 11495871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrous oxide and xenon increase the efficacy of GABA at recombinant mammalian GABA(A) receptors.
    Hapfelmeier G; Zieglgänsberger W; Haseneder R; Schneck H; Kochs E
    Anesth Analg; 2000 Dec; 91(6):1542-9. PubMed ID: 11094015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lamina-specific suppression of dorsal horn unit activity by nitrous oxide and by hyperventilation.
    Kitahata LM; Taub A; Sato I
    J Pharmacol Exp Ther; 1971 Jan; 176(1):101-8. PubMed ID: 5569627
    [No Abstract]   [Full Text] [Related]  

  • 31. The effects of xenon or nitrous oxide supplementation on systemic oxygenation and pulmonary perfusion during one-lung ventilation in pigs.
    Schwarzkopf K; Schreiber T; Gaser E; Preussler NP; Hueter L; Schubert H; Rek H; Karzai W
    Anesth Analg; 2005 Feb; 100(2):335-339. PubMed ID: 15673852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol.
    Yamakura T; Harris RA
    Anesthesiology; 2000 Oct; 93(4):1095-101. PubMed ID: 11020766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increasing isoflurane from 0.9 to 1.1 minimum alveolar concentration minimally affects dorsal horn cell responses to noxious stimulation.
    Antognini JF; Carstens E
    Anesthesiology; 1999 Jan; 90(1):208-14. PubMed ID: 9915330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suppression of impulse transmission in the cat's dorsal horn by inhalation anesthetics.
    de Jong RH; Robles R; Heavner JE
    Anesthesiology; 1970 May; 32(5):440-5. PubMed ID: 4315565
    [No Abstract]   [Full Text] [Related]  

  • 35. A method for recording single unit activity in lumbar spinal cord in rats anesthetized with nitrous oxide in a hyperbaric chamber.
    Antognini JF; Atherley RJ; Laster MJ; Carstens E; Dutton RC; Eger EI
    J Neurosci Methods; 2007 Mar; 160(2):215-22. PubMed ID: 17045342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of halothane, ketamine and nitrous oxide on dynorphin mRNA expression in dorsal horn neurons after peripheral tissue injury.
    Tanimoto M; Fukuoka T; Miki K; Tokunaga A; Tashiro C; Noguchi K
    Brain Res; 1998 Nov; 811(1-2):88-95. PubMed ID: 9804904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complex effects of general anesthesia on sensory processing in the spinal dorsal horn.
    Yanagidani T; Ota K; Collins JG
    Brain Res; 1998 Nov; 812(1-2):301-4. PubMed ID: 9813379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of subanaesthetic concentrations of xenon in volunteers.
    Bedi A; McCarroll C; Murray JM; Stevenson MA; Fee JP
    Anaesthesia; 2002 Mar; 57(3):233-41. PubMed ID: 11879212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Presynaptic and postsynaptic effects of the anesthetics sevoflurane and nitrous oxide in the human spinal cord.
    Baars JH; Benzke M; von Dincklage F; Reiche J; Schlattmann P; Rehberg B
    Anesthesiology; 2007 Oct; 107(4):553-62. PubMed ID: 17893450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrous oxide and xenon inhibit the human (alpha 7)5 nicotinic acetylcholine receptor expressed in Xenopus oocyte.
    Suzuki T; Ueta K; Sugimoto M; Uchida I; Mashimo T
    Anesth Analg; 2003 Feb; 96(2):443-8, table of contents. PubMed ID: 12538194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.