These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 9174340)
1. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Lee J; Lentz BR Biochemistry; 1997 May; 36(21):6251-9. PubMed ID: 9174340 [TBL] [Abstract][Full Text] [Related]
3. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? Lentz BR; Lee JK Mol Membr Biol; 1999; 16(4):279-96. PubMed ID: 10766128 [TBL] [Abstract][Full Text] [Related]
4. A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles. Wu H; Zheng L; Lentz BR Biochemistry; 1996 Sep; 35(38):12602-11. PubMed ID: 8823198 [TBL] [Abstract][Full Text] [Related]
5. Transbilayer lipid redistribution accompanies poly(ethylene glycol) treatment of model membranes but is not induced by fusion. Lentz BR; Talbot W; Lee J; Zheng LX Biochemistry; 1997 Feb; 36(8):2076-83. PubMed ID: 9047306 [TBL] [Abstract][Full Text] [Related]
6. Roles of curvature and hydrophobic interstice energy in fusion: studies of lipid perturbant effects. Haque ME; Lentz BR Biochemistry; 2004 Mar; 43(12):3507-17. PubMed ID: 15035621 [TBL] [Abstract][Full Text] [Related]
7. Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles. Lentz BR; McIntyre GF; Parks DJ; Yates JC; Massenburg D Biochemistry; 1992 Mar; 31(10):2643-53. PubMed ID: 1547207 [TBL] [Abstract][Full Text] [Related]
8. Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: "nature's own" fusogenic lipid bilayer. Haque ME; McIntosh TJ; Lentz BR Biochemistry; 2001 Apr; 40(14):4340-8. PubMed ID: 11284690 [TBL] [Abstract][Full Text] [Related]
9. Outer leaflet-packing defects promote poly(ethylene glycol)-mediated fusion of large unilamellar vesicles. Lee J; Lentz BR Biochemistry; 1997 Jan; 36(2):421-31. PubMed ID: 9003195 [TBL] [Abstract][Full Text] [Related]
10. Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation. Burgess SW; McIntosh TJ; Lentz BR Biochemistry; 1992 Mar; 31(10):2653-61. PubMed ID: 1547208 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of lipid rearrangements during poly(ethylene glycol)-mediated fusion of highly curved unilamellar vesicles. Evans KO; Lentz BR Biochemistry; 2002 Jan; 41(4):1241-9. PubMed ID: 11802723 [TBL] [Abstract][Full Text] [Related]
12. The mechanism of vesicle fusion as revealed by molecular dynamics simulations. Marrink SJ; Mark AE J Am Chem Soc; 2003 Sep; 125(37):11144-5. PubMed ID: 16220905 [TBL] [Abstract][Full Text] [Related]
13. Rate and extent of poly(ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing. Parente RA; Lentz BR Biochemistry; 1986 Oct; 25(21):6678-88. PubMed ID: 3790550 [TBL] [Abstract][Full Text] [Related]
14. Functional and structural characterization of HIV-1 gp41 ectodomain regions in phospholipid membranes suggests that the fusion-active conformation is extended. Korazim O; Sackett K; Shai Y J Mol Biol; 2006 Dec; 364(5):1103-17. PubMed ID: 17045292 [TBL] [Abstract][Full Text] [Related]
15. Kinetic study of the aggregation and lipid mixing produced by alpha-sarcin on phosphatidylglycerol and phosphatidylserine vesicles: stopped-flow light scattering and fluorescence energy transfer measurements. Mancheño JM; Gasset M; Lacadena J; Ramón F; Martínez del Pozo A; Oñaderra M; Gavilanes JG Biophys J; 1994 Sep; 67(3):1117-25. PubMed ID: 7811923 [TBL] [Abstract][Full Text] [Related]
16. Detergent-mediated formation of polymer-supported phospholipid bilayers. Kataoka-Hamai C; Higuchi M; Iwai H; Miyahara Y Langmuir; 2010 Sep; 26(18):14600-5. PubMed ID: 20726608 [TBL] [Abstract][Full Text] [Related]
17. Effect of single chain lipids on phospholipase C-promoted vesicle fusion. A test for the stalk hypothesis of membrane fusion. Basáñez G; Goñi FM; Alonso A Biochemistry; 1998 Mar; 37(11):3901-8. PubMed ID: 9521711 [TBL] [Abstract][Full Text] [Related]
18. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. Henriques ST; Castanho MA Biochemistry; 2004 Aug; 43(30):9716-24. PubMed ID: 15274626 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence assays to monitor membrane fusion: potential application in biliary lipid secretion and vesicle interactions. Hoekstra D Hepatology; 1990 Sep; 12(3 Pt 2):61S-66S. PubMed ID: 2210660 [TBL] [Abstract][Full Text] [Related]
20. Effects of hemagglutinin fusion peptide on poly(ethylene glycol)-mediated fusion of phosphatidylcholine vesicles. Haque ME; McCoy AJ; Glenn J; Lee J; Lentz BR Biochemistry; 2001 Nov; 40(47):14243-51. PubMed ID: 11714278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]