These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 9174342)

  • 1. Structure and assembly of the catalytic region of human complement protease C1r: a three-dimensional model based on chemical cross-linking and homology modeling.
    Lacroix M; Rossi V; Gaboriaud C; Chevallier S; Jaquinod M; Thielens NM; Gagnon J; Arlaud GJ
    Biochemistry; 1997 May; 36(21):6270-82. PubMed ID: 9174342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the catalytic region of human complement protease C1s: study by chemical cross-linking and three-dimensional homology modeling.
    Rossi V; Gaboriaud C; Lacroix M; Ulrich J; Fontecilla-Camps JC; Gagnon J; Arlaud GJ
    Biochemistry; 1995 Jun; 34(22):7311-21. PubMed ID: 7779774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting the mechanism of the autoactivation of the complement protease C1r in the C1 complex: structure of the active catalytic region of C1r.
    Kardos J; Harmat V; Palló A; Barabás O; Szilágyi K; Gráf L; Náray-Szabó G; Goto Y; Závodszky P; Gál P
    Mol Immunol; 2008 Mar; 45(6):1752-60. PubMed ID: 17996945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex.
    Budayova-Spano M; Lacroix M; Thielens NM; Arlaud GJ; Fontecilla-Camps JC; Gaboriaud C
    EMBO J; 2002 Feb; 21(3):231-9. PubMed ID: 11823416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermodule cooperativity in the structure and dynamics of consecutive complement control modules in human C1r: structural biology.
    Láng A; Szilágyi K; Major B; Gál P; Závodszky P; Perczel A
    FEBS J; 2010 Oct; 277(19):3986-98. PubMed ID: 20796027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of the epidermal growth factor (EGF)-like module of human complement protease C1r, an atypical member of the EGF family.
    Bersch B; Hernandez JF; Marion D; Arlaud GJ
    Biochemistry; 1998 Feb; 37(5):1204-14. PubMed ID: 9477945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure and function of the first component of complement: genetic engineering approach (a review).
    Gál P; Cseh S; Schumaker VN; Závodszky P
    Acta Microbiol Immunol Hung; 1994; 41(4):361-80. PubMed ID: 7866721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of the catalytic domains of human complement serine protease C1r.
    Arlaud GJ; Gagnon J; Villiers CL; Colomb MG
    Biochemistry; 1986 Sep; 25(18):5177-82. PubMed ID: 3021210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the C3b binding site in a recombinant vWF-A domain of complement factor B by surface-enhanced laser desorption-ionisation affinity mass spectrometry and homology modelling: implications for the activity of factor B.
    Hinshelwood J; Spencer DI; Edwards YJ; Perkins SJ
    J Mol Biol; 1999 Nov; 294(2):587-99. PubMed ID: 10610782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of the serine-protease subcomponents of C1: protein engineering studies.
    Gál P; Závodszky P
    Immunobiology; 1998 Aug; 199(2):317-26. PubMed ID: 9777415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and enzymatic properties of the catalytic domain of human complement protease C1r.
    Lacroix M; Ebel C; Kardos J; Dobó J; Gál P; Závodszky P; Arlaud GJ; Thielens NM
    J Biol Chem; 2001 Sep; 276(39):36233-40. PubMed ID: 11445589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between separated consecutive complement control modules of human C1r: implications for dimerization of the full-length protease.
    Láng A; Major B; Szilágyi K; Gáspári Z; Gál P; Závodszky P; Perczel A
    FEBS Lett; 2010 Nov; 584(22):4565-9. PubMed ID: 20970424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-dependent conformational changes in a recombinant vWF-A domain from human factor B: a solution study by circular dichroism, fourier transform infrared and (1)H NMR spectroscopy.
    Hinshelwood J; Perkins SJ
    J Mol Biol; 2000 Apr; 298(1):135-47. PubMed ID: 10756110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function of C1r and C1s: current concepts.
    Arlaud GJ; Thielens NM; Aude CA
    Behring Inst Mitt; 1989 Jul; (84):56-64. PubMed ID: 2552982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of the C1 complex.
    Arlaud GJ; Thielens NM; Illy C
    Behring Inst Mitt; 1993 Dec; (93):189-95. PubMed ID: 8172567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel human dendritic cell-derived C1r-like serine protease analog inhibits complement-mediated cytotoxicity.
    Lin N; Liu S; Li N; Wu P; An H; Yu Y; Wan T; Cao X
    Biochem Biophys Res Commun; 2004 Aug; 321(2):329-36. PubMed ID: 15358180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary conserved rigid module-domain interactions can be detected at the sequence level: the examples of complement and blood coagulation proteases.
    Gaboriaud C; Rossi V; Fontecilla-Camps JC; Arlaud GJ
    J Mol Biol; 1998 Sep; 282(2):459-70. PubMed ID: 9735300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical synthesis and characterization of the epidermal growth factor-like module of human complement protease C1r.
    Hernandez JF; Bersch B; Pétillot Y; Gagnon J; Arlaud GJ
    J Pept Res; 1997 Mar; 49(3):221-31. PubMed ID: 9151255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of MBL-associated serine protease-2 reveals that identical substrate specificities of C1s and MASP-2 are realized through different sets of enzyme-substrate interactions.
    Harmat V; Gál P; Kardos J; Szilágyi K; Ambrus G; Végh B; Náray-Szabó G; Závodszky P
    J Mol Biol; 2004 Oct; 342(5):1533-46. PubMed ID: 15364579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.