BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9174352)

  • 21. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of the alpha subunit of farnesyl-protein transferase in substrate recognition.
    Pellicena P; Scholten JD; Zimmerman K; Creswell M; Huang CC; Miller WT
    Biochemistry; 1996 Oct; 35(41):13494-500. PubMed ID: 8873619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics simulations on the critical states of the farnesyltransferase enzyme.
    Sousa SF; Fernandes PA; Ramos MJ
    Bioorg Med Chem; 2009 May; 17(9):3369-78. PubMed ID: 19369081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein farnesyl transferase target selectivity is dependent upon peptide stimulated product release.
    Troutman JM; Andres DA; Spielmann HP
    Biochemistry; 2007 Oct; 46(40):11299-309. PubMed ID: 17877368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isoprenoid diphosphate utilization by recombinant human farnesyl:protein transferase: interactive binding between substrates and a preferred kinetic pathway.
    Pompliano DL; Schaber MD; Mosser SD; Omer CA; Shafer JA; Gibbs JB
    Biochemistry; 1993 Aug; 32(32):8341-7. PubMed ID: 8347630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic analysis of zinc ligand mutants of mammalian protein farnesyltransferase.
    Fu HW; Beese LS; Casey PJ
    Biochemistry; 1998 Mar; 37(13):4465-72. PubMed ID: 9521766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mechanism for posttranslational modifications of proteins by yeast protein farnesyltransferase.
    Dolence JM; Poulter CD
    Proc Natl Acad Sci U S A; 1995 May; 92(11):5008-11. PubMed ID: 7761439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression cloning of a novel farnesylated protein, RDJ2, encoding a DnaJ protein homologue.
    Andres DA; Shao H; Crick DC; Finlin BS
    Arch Biochem Biophys; 1997 Oct; 346(1):113-24. PubMed ID: 9328291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter.
    Tang L; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 May; 42(18):5378-86. PubMed ID: 12731879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Protein farnesyl and geranylgeranyl transferases].
    de Gunzburg J
    C R Seances Soc Biol Fil; 1991; 185(5):290-305. PubMed ID: 1806188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conversion of protein farnesyltransferase to a geranylgeranyltransferase.
    Terry KL; Casey PJ; Beese LS
    Biochemistry; 2006 Aug; 45(32):9746-55. PubMed ID: 16893176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: pre-steady-state kinetic studies.
    Moore JA; Mathis JR; Poulter CD
    Biochim Biophys Acta; 2000 Jun; 1479(1-2):166-74. PubMed ID: 11004538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purified yeast protein farnesyltransferase is structurally and functionally similar to its mammalian counterpart.
    Gomez R; Goodman LE; Tripathy SK; O'Rourke E; Manne V; Tamanoi F
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):25-31. PubMed ID: 8424764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue.
    Strickland CL; Windsor WT; Syto R; Wang L; Bond R; Wu Z; Schwartz J; Le HV; Beese LS; Weber PC
    Biochemistry; 1998 Nov; 37(47):16601-11. PubMed ID: 9843427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Farnesyl diphosphate synthase; regulation of product specificity.
    Szkopińska A; Płochocka D
    Acta Biochim Pol; 2005; 52(1):45-55. PubMed ID: 15827605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity.
    Reid TS; Terry KL; Casey PJ; Beese LS
    J Mol Biol; 2004 Oct; 343(2):417-33. PubMed ID: 15451670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression, purification, and kinetic characterization of a carboxyl-terminal-truncated yeast squalene synthetase.
    LoGrasso PV; Soltis DA; Boettcher BR
    Arch Biochem Biophys; 1993 Nov; 307(1):193-9. PubMed ID: 8239656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine.
    Hindson VJ
    Biochem J; 2003 Nov; 375(Pt 3):745-52. PubMed ID: 12940772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Yeast protein farnesyltransferase. pKas of peptide substrates bound as zinc thiolates.
    Rozema DB; Poulter CD
    Biochemistry; 1999 Oct; 38(40):13138-46. PubMed ID: 10529185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.