BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9174352)

  • 41. Mammalian protein geranylgeranyltransferase-I: substrate specificity, kinetic mechanism, metal requirements, and affinity labeling.
    Yokoyama K; McGeady P; Gelb MH
    Biochemistry; 1995 Jan; 34(4):1344-54. PubMed ID: 7827082
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetics of protein farnesyltransferase: sigmoidal vs hyperbolic behavior as a function of assay conditions.
    Thissen JA; Casey PJ
    Anal Biochem; 1996 Dec; 243(1):80-5. PubMed ID: 8954528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein farnesyltransferase: structure and implications for substrate binding.
    Dunten P; Kammlott U; Crowther R; Weber D; Palermo R; Birktoft J
    Biochemistry; 1998 Jun; 37(22):7907-12. PubMed ID: 9609683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Farnesyl-protein transferase and geranylgeranyl-protein transferase assays using phosphocellulose paper absorption.
    Roskoski R; Ritchie P; Gahn LG
    Anal Biochem; 1994 Oct; 222(1):275-80. PubMed ID: 7856861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. C-terminal proteolysis of prenylated proteins in trypanosomatids and RNA interference of enzymes required for the post-translational processing pathway of farnesylated proteins.
    Gillespie JR; Yokoyama K; Lu K; Eastman RT; Bollinger JG; Van Voorhis WC; Gelb MH; Buckner FS
    Mol Biochem Parasitol; 2007 Jun; 153(2):115-24. PubMed ID: 17397944
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two subunits of heptaprenyl diphosphate synthase of Bacillus subtilis form a catalytically active complex.
    Zhang YW; Koyama T; Marecak DM; Prestwich GD; Maki Y; Ogura K
    Biochemistry; 1998 Sep; 37(38):13411-20. PubMed ID: 9748348
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of inhibition of yeast squalene synthase by substrate analog inhibitors.
    Kalinowski SS; Mookhtiar KA
    Arch Biochem Biophys; 1999 Aug; 368(2):338-46. PubMed ID: 10441385
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of the carboxyterminal residue in peptide binding to protein farnesyltransferase and protein geranylgeranyltransferase.
    Roskoski R; Ritchie P
    Arch Biochem Biophys; 1998 Aug; 356(2):167-76. PubMed ID: 9705207
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reaction path of protein farnesyltransferase at atomic resolution.
    Long SB; Casey PJ; Beese LS
    Nature; 2002 Oct; 419(6907):645-50. PubMed ID: 12374986
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Steady-state kinetic mechanism of Ras farnesyl:protein transferase.
    Pompliano DL; Rands E; Schaber MD; Mosser SD; Anthony NJ; Gibbs JB
    Biochemistry; 1992 Apr; 31(15):3800-7. PubMed ID: 1567835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Farnesyl diphosphate analogues with aryl moieties are efficient alternate substrates for protein farnesyltransferase.
    Subramanian T; Pais JE; Liu S; Troutman JM; Suzuki Y; Leela Subramanian K; Fierke CA; Andres DA; Spielmann HP
    Biochemistry; 2012 Oct; 51(41):8307-19. PubMed ID: 22989235
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Active site loop motion in triosephosphate isomerase: T-jump relaxation spectroscopy of thermal activation.
    Desamero R; Rozovsky S; Zhadin N; McDermott A; Callender R
    Biochemistry; 2003 Mar; 42(10):2941-51. PubMed ID: 12627960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 A resolution ternary complex structures.
    Long SB; Casey PJ; Beese LS
    Structure; 2000 Feb; 8(2):209-22. PubMed ID: 10673434
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interplay between the cis-prenyltransferases and polyprenol reductase in the yeast Saccharomyces cerevisiae.
    Szkopinska A; Swiezewska E; Rytka J
    Biochimie; 2006; 88(3-4):271-6. PubMed ID: 16213651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. H-Ras peptide and protein substrates bind protein farnesyltransferase as an ionized thiolate.
    Hightower KE; Huang CC; Casey PJ; Fierke CA
    Biochemistry; 1998 Nov; 37(44):15555-62. PubMed ID: 9799520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Farnesyltransferase as a target for anticancer drug design.
    Qian Y; Sebti SM; Hamilton AD
    Biopolymers; 1997; 43(1):25-41. PubMed ID: 9174410
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The crystal structure of human protein farnesyltransferase reveals the basis for inhibition by CaaX tetrapeptides and their mimetics.
    Long SB; Hancock PJ; Kral AM; Hellinga HW; Beese LS
    Proc Natl Acad Sci U S A; 2001 Nov; 98(23):12948-53. PubMed ID: 11687658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis.
    Chin HG; Patnaik D; Estève PO; Jacobsen SE; Pradhan S
    Biochemistry; 2006 Mar; 45(10):3272-84. PubMed ID: 16519522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential prenyl pyrophosphate binding to mammalian protein geranylgeranyltransferase-I and protein farnesyltransferase and its consequence on the specificity of protein prenylation.
    Yokoyama K; Zimmerman K; Scholten J; Gelb MH
    J Biol Chem; 1997 Feb; 272(7):3944-52. PubMed ID: 9020098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.