These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9174906)

  • 1. New formats of polymeric stationary phases for HPLC separations: molded macroporous disks and rods.
    Svec F; Fréchet JM
    J Mol Recognit; 1996; 9(5-6):326-34. PubMed ID: 9174906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous polymer monoliths: an alternative to classical beads.
    Xie S; Allington RW; Fréchet JM; Svec F
    Adv Biochem Eng Biotechnol; 2002; 76():87-125. PubMed ID: 12126272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic polymer monoliths as stationary phases for capillary HPLC.
    Svec F
    J Sep Sci; 2004 Dec; 27(17-18):1419-30. PubMed ID: 15638150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and HPLC applications of rigid macroporous organic polymer monoliths.
    Svec F
    J Sep Sci; 2004 Jul; 27(10-11):747-66. PubMed ID: 15354553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molded monolithic rod of macroporous poly(styrene-co-divinylbenzene) as a separation medium for HPLC of synthetic polymers: on-column precipitation--redissolution chromatography as an alternative to size exclusion chromatography of styrene oligomers and polymers.
    Petro M; Svec F; Gitsov I; Fréchet JM
    Anal Chem; 1996 Jan; 68(2):315-21. PubMed ID: 9027239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous monoliths: stationary phases of choice for high performance liquid chromatography in various formats.
    Svec F
    Se Pu; 2005 Nov; 23(6):585-94. PubMed ID: 16498986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methacrylate-based chromatographic media.
    Benes MJ; Horák D; Svec F
    J Sep Sci; 2005 Oct; 28(15):1855-75. PubMed ID: 16276779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molded continuous poly(styrene-co-divinylbenzene) rod as a separation medium for the very fast separation of polymers. Comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes.
    Petro M; Svec F; Fréchet JM
    J Chromatogr A; 1996 Nov; 752(1-2):59-66. PubMed ID: 8962497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography.
    Wang QC; Svec F; Fréchet JM
    Anal Chem; 1993 Sep; 65(17):2243-8. PubMed ID: 8238925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards stationary phases for chromatography on a microchip: molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography.
    Yu C; Svec F; Fréchet JM
    Electrophoresis; 2000 Jan; 21(1):120-7. PubMed ID: 10634478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins.
    Xie S; Svec F; Fréchet JM
    J Chromatogr A; 1997 Jul; 775(1-2):65-72. PubMed ID: 9253195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis and application of a new class of stimuli-responsive separation materials.
    Sepehrifar R; Boysen RI; Danylec B; Yang Y; Saito K; Hearn MT
    Anal Chim Acta; 2017 Apr; 963():153-163. PubMed ID: 28335969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform-size hydrophobic polymer-based separation media selectively modified with a hydrophilic external polymeric layer.
    Hosoya K; Kishii Y; Kimata K; Araki T; Tanaka N; Svec F; Fréchet JM
    J Chromatogr A; 1995 Jan; 690(1):21-8. PubMed ID: 7881539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports.
    Svec F
    Electrophoresis; 2006 Mar; 27(5-6):947-61. PubMed ID: 16470758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric porogens used in the preparation of novel monodispersed macroporous polymeric separation media for high-performance liquid chromatography.
    Wang QC; Hosoya K; Svec F; Fréchet JM
    Anal Chem; 1992 Jun; 64(11):1232-8. PubMed ID: 1621992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary-channeled polymer fibers as stationary phases in liquid chromatography separations.
    Marcus RK; Davis WC; Knippel BC; LaMotte L; Hill TA; Perahia D; Jenkins JD
    J Chromatogr A; 2003 Jan; 986(1):17-31. PubMed ID: 12585319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography.
    Nischang I; Teasdale I; Brüggemann O
    J Chromatogr A; 2010 Nov; 1217(48):7514-22. PubMed ID: 20980011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Molded" rods of macroporous polymer for preparative separations of biological products.
    Svec F; Fréchet JM
    Biotechnol Bioeng; 1995 Dec; 48(5):476-80. PubMed ID: 18623511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of methacrylate monoliths.
    Vlakh EG; Tennikova TB
    J Sep Sci; 2007 Nov; 30(17):2801-13. PubMed ID: 17960852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The design of chiral separation media using monodisperse functionalized macroporous beads: effects of polymer matrix, tether, and linkage chemistry.
    Lewandowski K; Murer P; Svec F; Fréchet JM
    Anal Chem; 1998 Apr; 70(8):1629-38. PubMed ID: 9569769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.