These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9174906)

  • 21. Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of enantiomers and diastereomers.
    Huang X; Zou H; Chen X; Luo Q; Kong L
    J Chromatogr A; 2003 Jan; 984(2):273-82. PubMed ID: 12564699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molded rigid polymer monoliths as separation media for capillary electrochromatography. 2. Effect of chromatographic conditions on the separation.
    Peters EC; Petro M; Svec F; Fréchet JM
    Anal Chem; 1998 Jun; 70(11):2296-302. PubMed ID: 9624901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent applications of organic monoliths in capillary liquid chromatographic separation of biomolecules.
    Bakry R; Huck CW; Bonn GK
    J Chromatogr Sci; 2009 Jul; 47(6):418-31. PubMed ID: 19555547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths.
    Nischang I; Brüggemann O
    J Chromatogr A; 2010 Aug; 1217(33):5389-97. PubMed ID: 20598699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of hydrophilic interaction/ion-exchange mixed-mode chromatographic stationary phase with adjustable selectivity by controlling different ratios of the co-monomers.
    Bo C; Wang X; Wang C; Wei Y
    J Chromatogr A; 2017 Mar; 1487():201-210. PubMed ID: 28139227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chiral monolithic columns for enantioselective capillary electrochromatography prepared by copolymerization of a monomer with quinidine functionality. 1. Optimization of polymerization conditions, porous properties, and chemistry of the stationary phase.
    Lämmerhofer M; Peters EC; Yu C; Svec F; Fréchet JM
    Anal Chem; 2000 Oct; 72(19):4614-22. PubMed ID: 11028619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional high-performance liquid chromatography using monodisperse polymer beads containing segregated chemistries prepared by pore size specific functionalization. Single-column combinations of size exclusion or ion exchange with reversed-phase chromatography.
    Smigol V; Svec F; Fréchet JM
    Anal Chem; 1994 Dec; 66(23):4308-15. PubMed ID: 7847631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast ion-exchange HPLC of proteins using porous poly(glycidyl methacrylate-co-ethylene dimethacrylate) monoliths grafted with poly(2-acrylamido-2-methyl-1-propanesulfonic acid).
    Viklund C; Svec F; Fréchet JM; Irgum K
    Biotechnol Prog; 1997; 13(5):597-600. PubMed ID: 9336979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance affinity chromatography with immobilization of protein A and L-histidine on molded monolith.
    Luo Q; Zou H; Zhang Q; Xiao X; Ni J
    Biotechnol Bioeng; 2002 Dec; 80(5):481-9. PubMed ID: 12355458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymethacrylate monolithic columns for capillary liquid chromatography.
    Urban J; Jandera P
    J Sep Sci; 2008 Aug; 31(14):2521-40. PubMed ID: 18623280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HPLC analysis of synthetic polymers on short monolithic columns.
    Maksimova E; Vlakh E; Sinitsyna E; Tennikova T
    J Sep Sci; 2013 Dec; 36(23):3741-9. PubMed ID: 24106069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins.
    Tennikov MB; Gazdina NV; Tennikova TB; Svec F
    J Chromatogr A; 1998 Mar; 798(1-2):55-64. PubMed ID: 9542126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molded rigid polymer monoliths as separation media for capillary electrochromatography.
    Peters EC; Petro M; Svec F; Fréchet JM
    Anal Chem; 1997 Sep; 69(17):3646-9. PubMed ID: 9286168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophilization of porous polystyrene-based continuous rod column.
    Wang QC; Svec F; Fréchet JM
    Anal Chem; 1995 Feb; 67(3):670-4. PubMed ID: 7893005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of polymethacrylate-based monoliths in high-performance liquid chromatography.
    Vlakh EG; Tennikova TB
    J Chromatogr A; 2009 Mar; 1216(13):2637-50. PubMed ID: 18929365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fiber-based monolithic columns for liquid chromatography.
    Ladisch M; Zhang L
    Anal Bioanal Chem; 2016 Oct; 408(25):6871-83. PubMed ID: 27553948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and chromatographic evaluation of new polymeric chiral stationary phases based on three (1S,2S)-(-)-1,2-diphenylethylenediamine derivatives in HPLC and SFC.
    Payagala T; Wanigasekara E; Armstrong DW
    Anal Bioanal Chem; 2011 Mar; 399(7):2445-61. PubMed ID: 21203750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilization of trypsin onto "molded" macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate) rods and use of the conjugates as bioreactors and for affinity chromatography.
    Petro M; Svec F; Fréchet JM
    Biotechnol Bioeng; 1996 Feb; 49(4):355-63. PubMed ID: 18623589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of new zirconia-based polymeric cation-exchange stationary phases for high-performance liquid chromatography of proteins.
    Hu Y; Carr PW
    Anal Chem; 1998 May; 70(9):1934-42. PubMed ID: 9599588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.
    Chen CH; Lee WC
    J Chromatogr A; 2001 Jun; 921(1):31-7. PubMed ID: 11461011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.