These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9174997)

  • 1. Effect of hydroxylamine on photon-like events during dark adaptation in toad rod photoreceptors.
    Leibrock CS; Lamb TD
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):97-109. PubMed ID: 9174997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of dark adaptation in rod photoreceptors.
    Leibrock CS; Reuter T; Lamb TD
    Eye (Lond); 1998; 12 ( Pt 3b)():511-20. PubMed ID: 9775211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dark adaptation of toad rod photoreceptors following small bleaches.
    Leibrock CS; Reuter T; Lamb TD
    Vision Res; 1994 Nov; 34(21):2787-800. PubMed ID: 7975314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between hydroxylamine, metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes.
    Hofmann KP; Emeis D; Schnetkamp PP
    Biochim Biophys Acta; 1983 Oct; 725(1):60-70. PubMed ID: 6313051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the regeneration of rhodopsin in the isolated amphibian retina.
    Cocozza JD; Ostroy SE
    Vision Res; 1987; 27(7):1085-91. PubMed ID: 3116765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro.
    Sakamoto T; Khorana HG
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axial gradients of rhodopsin in light-exposed retinal rods of the toad.
    Makino CL; Howard LN; Williams TP
    J Gen Physiol; 1990 Dec; 96(6):1199-220. PubMed ID: 2126801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin photoproducts and rod sensitivity in the skate retina.
    Brin KP; Ripps H
    J Gen Physiol; 1977 Jan; 69(1):97-120. PubMed ID: 833567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH and rate of "dark" events in toad retinal rods: test of a hypothesis on the molecular origin of photoreceptor noise.
    Firsov ML; Donner K; Govardovskii VI
    J Physiol; 2002 Mar; 539(Pt 3):837-46. PubMed ID: 11897853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rod pigment and rod noise in the European toad Bufo bufo.
    Fyhrquist N; Govardovskii V; Leibrock C; Reuter T
    Vision Res; 1998 Feb; 38(4):483-6. PubMed ID: 9536371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydroxylamine on the subcellular distribution of arrestin (S-antigen) in rod photoreceptors.
    Mangini NJ; Garner GL; Okajima TI; Donoso LA; Pepperberg DR
    Vis Neurosci; 1994; 11(3):561-8. PubMed ID: 8038128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxylamine-dependent inhibition of rhodopsin phosphorylation in the isolated retina.
    Pepperberg DR; Okajima TI
    Exp Eye Res; 1992 Mar; 54(3):369-76. PubMed ID: 1387847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability in the time course of single photon responses from toad rods: termination of rhodopsin's activity.
    Whitlock GG; Lamb TD
    Neuron; 1999 Jun; 23(2):337-51. PubMed ID: 10399939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cytoplasmic calcium concentration in the bleaching adaptation of salamander cone photoreceptors.
    Matthews HR; Fain GL; Cornwall MC
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):293-303. PubMed ID: 8821129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary deficiency of N-3 fatty acids alters rhodopsin content and function in the rat retina.
    Bush RA; Malnoë A; Remé CE; Williams TP
    Invest Ophthalmol Vis Sci; 1994 Jan; 35(1):91-100. PubMed ID: 8300367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition.
    He Q; Alexeev D; Estevez ME; McCabe SL; Calvert PD; Ong DE; Cornwall MC; Zimmerman AL; Makino CL
    J Gen Physiol; 2006 Oct; 128(4):473-85. PubMed ID: 17001087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception.
    Reingruber J; Holcman D; Fain GL
    Bioessays; 2015 Nov; 37(11):1243-52. PubMed ID: 26354340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light responses and light adaptation in rat retinal rods at different temperatures.
    Nymark S; Heikkinen H; Haldin C; Donner K; Koskelainen A
    J Physiol; 2005 Sep; 567(Pt 3):923-38. PubMed ID: 16037091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.