BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9175438)

  • 21. Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase.
    McAlister-Henn L; Thompson LM
    J Bacteriol; 1987 Nov; 169(11):5157-66. PubMed ID: 3312168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiology of sporeforming bacteria associated with insects. V. Tricarboxylic acid cycle activity and adenosine triphosphate levels in Bacillus popilliae and Bacillus thuringiensis.
    Yousten AA; Hanson RS; Bulla LA; Julian GS
    Can J Microbiol; 1974 Dec; 20(12):1729-34. PubMed ID: 4441983
    [No Abstract]   [Full Text] [Related]  

  • 23. Reversible transdominant inhibition of a metabolic pathway. In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast.
    Vélot C; Srere PA
    J Biol Chem; 2000 Apr; 275(17):12926-33. PubMed ID: 10777592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of promoter methylation of the genes encoding the enzymes metabolizing di- and tricarboxylic acids in the regulation of plant respiration by light.
    Fedorin DN; Eprintsev AT; Igamberdiev AU
    J Plant Physiol; 2024 Mar; 294():154195. PubMed ID: 38377939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of asparagusate and lipoate on enzymes of the tricarboxylic acid cycle and related metabolic pathways.
    Yanagawa H; Egami F
    J Biochem; 1975 Dec; 78(6):1153-60. PubMed ID: 773925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic effects of mislocalized mitochondrial and peroxisomal citrate synthases in yeast Saccharomyces cerevisiae.
    Vélot C; Lebreton S; Morgunov I; Usher KC; Srere PA
    Biochemistry; 1999 Dec; 38(49):16195-204. PubMed ID: 10587442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase.
    Minard KI; McAlister-Henn L
    Mol Cell Biol; 1991 Jan; 11(1):370-80. PubMed ID: 1986231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced citrate production through gene insertion in Aspergillus niger.
    de Jongh WA; Nielsen J
    Metab Eng; 2008 Mar; 10(2):87-96. PubMed ID: 18162426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tricarboxylic acid cycle enzymes of the ectomycorrhizal basidiomycete, Suillus bovinus.
    Grotjohann N; Huang Y; Kowallik W
    Z Naturforsch C J Biosci; 2001; 56(5-6):334-42. PubMed ID: 11421446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of metabolic defects of yeast isocitrate dehydrogenase and aconitase mutants by loss of citrate synthase.
    Lin AP; Hakala KW; Weintraub ST; McAlister-Henn L
    Arch Biochem Biophys; 2008 Jun; 474(1):205-12. PubMed ID: 18359281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study.
    Jung T; Mack M
    FEMS Microbiol Lett; 2018 Apr; 365(8):. PubMed ID: 29546354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase.
    Steffan JS; McAlister-Henn L
    J Biol Chem; 1992 Dec; 267(34):24708-15. PubMed ID: 1447211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisiting the TCA cycle: signaling to tumor formation.
    Raimundo N; Baysal BE; Shadel GS
    Trends Mol Med; 2011 Nov; 17(11):641-9. PubMed ID: 21764377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase.
    Jia YK; Bécam AM; Herbert CJ
    Mol Microbiol; 1997 Apr; 24(1):53-9. PubMed ID: 9140965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Bacillus subtilis malate dehydrogenase gene.
    Jin S; De Jesús-Berríos M; Sonenshein AL
    J Bacteriol; 1996 Jan; 178(2):560-3. PubMed ID: 8550482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer.
    Schnarrenberger C; Martin W
    Eur J Biochem; 2002 Feb; 269(3):868-83. PubMed ID: 11846788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon.
    Vélot C; Mixon MB; Teige M; Srere PA
    Biochemistry; 1997 Nov; 36(47):14271-6. PubMed ID: 9400365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The regulatory role of Streptomyces coelicolor TamR in central metabolism.
    Huang H; Sivapragasam S; Grove A
    Biochem J; 2015 Mar; 466(2):347-58. PubMed ID: 25494937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Evidence for Metabolon Formation and Substrate Channeling in Recombinant TCA Cycle Enzymes.
    Bulutoglu B; Garcia KE; Wu F; Minteer SD; Banta S
    ACS Chem Biol; 2016 Oct; 11(10):2847-2853. PubMed ID: 27556423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition by alloxan of mitochondrial aconitase and other enzymes associated with the citric acid cycle.
    Boquist L; Ericsson I
    FEBS Lett; 1984 Dec; 178(2):245-8. PubMed ID: 6510522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.