BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9175563)

  • 1. Anaerobic phenol degradation by microorganisms of swine manure.
    Boopathy R
    Curr Microbiol; 1997 Jul; 35(1):64-7. PubMed ID: 9175563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methanogenesis from furfural by defined mixed cultures.
    Boopathy R
    Curr Microbiol; 2002 Jun; 44(6):406-10. PubMed ID: 12000990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil.
    Levén L; Nyberg K; Korkea-Aho L; Schnürer A
    Sci Total Environ; 2006 Jul; 364(1-3):229-38. PubMed ID: 16125214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of partial anaerobic metabolic pathway for 2,4,6-trinitrotoluene degradation by a sulfate-reducing bacterial consortium.
    Boopathy R; Manning JF
    Can J Microbiol; 1996 Dec; 42(12):1203-8. PubMed ID: 8989860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of phenolic compounds from a petrochemical effluent with a methanogenic consortium.
    Charest A; Bisaillon JG; Lépine F; Beaudet R
    Can J Microbiol; 1999 Mar; 45(3):235-41. PubMed ID: 10408096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Microbiologic characteristics of a trisectional horizontal biogas tank running on cow manure].
    Kuznetsov LE; Nozhevnikova AN; Nekrasova VK; Slobodkin AI; Siman'kova MV; Vedenina IIa
    Prikl Biokhim Mikrobiol; 1989; 25(4):540-7. PubMed ID: 2813302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of hydrogen sulfide, methane, and total gas production and sulfate-reducing bacteria in in vitro swine manure by tannins, with focus on condensed quebracho tannins.
    Whitehead TR; Spence C; Cotta MA
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8403-9. PubMed ID: 23149758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors.
    Aangelidaki I; Ahrin BK; Deng H; Schmidt JE
    Water Sci Technol; 2002; 45(10):213-8. PubMed ID: 12188547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions.
    Cervantes FJ; Gutiérrez CH; López KY; Estrada-Alvarado MI; Meza-Escalante ER; Texier AC; Cuervo F; Gómez J
    Biodegradation; 2008 Apr; 19(2):235-46. PubMed ID: 17534721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils.
    Shibata A; Inoue Y; Katayama A
    Sci Total Environ; 2006 Aug; 367(2-3):979-87. PubMed ID: 16530810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic degradation of nonylphenol in soil.
    Chang BV; Chiang BW; Yuan SY
    J Environ Sci Health B; 2007 May; 42(4):387-92. PubMed ID: 17474018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of nonylphenol by anaerobic microorganisms from river sediment.
    Chang BV; Yu CH; Yuan SY
    Chemosphere; 2004 Apr; 55(4):493-500. PubMed ID: 15006502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding gaseous reduction in swine manure resulting from nanoparticle treatments under anaerobic storage conditions.
    Sarker NC; Borhan M; Fortuna AM; Rahman S
    J Environ Sci (China); 2019 Aug; 82():179-191. PubMed ID: 31133263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes involved in the anaerobic degradation of phenol by the sulfate-reducing bacterium Desulfatiglans anilini.
    Xie X; Müller N
    BMC Microbiol; 2018 Aug; 18(1):93. PubMed ID: 30157755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H
    St-Pierre B; Wright AG
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5543-5556. PubMed ID: 28389712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic degradation of m-cresol in anoxic aquifer slurries: carboxylation reactions in a sulfate-reducing bacterial enrichment.
    Ramanand K; Suflita JM
    Appl Environ Microbiol; 1991 Jun; 57(6):1689-95. PubMed ID: 1872602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an anaerobic bacterial consortium that degrades roxarsone.
    Li Y; Liu Y; Zhang Z; Fei Y; Tian X; Cao S
    Microbiologyopen; 2020 Apr; 9(4):e1003. PubMed ID: 32053294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ecology and biotechnology of sulphate-reducing bacteria.
    Muyzer G; Stams AJ
    Nat Rev Microbiol; 2008 Jun; 6(6):441-54. PubMed ID: 18461075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.