These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 9176115)
1. Evidence for a reduced chemokine response in the lungs of beige mice infected with Mycobacterium avium. Florido M; Appelberg R; Orme IM; Cooper AM Immunology; 1997 Apr; 90(4):600-6. PubMed ID: 9176115 [TBL] [Abstract][Full Text] [Related]
2. Susceptibility of beige mice to Mycobacterium avium: role of neutrophils. Appelberg R; Castro AG; Gomes S; Pedrosa J; Silva MT Infect Immun; 1995 Sep; 63(9):3381-7. PubMed ID: 7642266 [TBL] [Abstract][Full Text] [Related]
3. Intranasal infection of beige mice with Mycobacterium avium complex: role of neutrophils and natural killer cells. Saunders BM; Cheers C Infect Immun; 1996 Oct; 64(10):4236-41. PubMed ID: 8926094 [TBL] [Abstract][Full Text] [Related]
4. T-cell-independent granuloma formation in response to Mycobacterium avium: role of tumour necrosis factor-alpha and interferon-gamma. Smith D; Hänsch H; Bancroft G; Ehlers S Immunology; 1997 Dec; 92(4):413-21. PubMed ID: 9497481 [TBL] [Abstract][Full Text] [Related]
5. Defects in cell-mediated immunity affect chronic, but not innate, resistance of mice to Mycobacterium avium infection. Doherty TM; Sher A J Immunol; 1997 May; 158(10):4822-31. PubMed ID: 9144497 [TBL] [Abstract][Full Text] [Related]
6. NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. Feng CG; Kaviratne M; Rothfuchs AG; Cheever A; Hieny S; Young HA; Wynn TA; Sher A J Immunol; 2006 Nov; 177(10):7086-93. PubMed ID: 17082625 [TBL] [Abstract][Full Text] [Related]
7. The relative impact of bacterial virulence and host genetic background on cytokine expression during Mycobacterium avium infection of mice. Castro AG; Minóprio P; Appelberg R Immunology; 1995 Aug; 85(4):556-61. PubMed ID: 7558149 [TBL] [Abstract][Full Text] [Related]
8. Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and -dependent phases of Mycobacterium avium infection. Appelberg R; Castro AG; Pedrosa J; Silva RA; Orme IM; Minóprio P Infect Immun; 1994 Sep; 62(9):3962-71. PubMed ID: 8063414 [TBL] [Abstract][Full Text] [Related]
9. Macrophage inflammatory proteins MIP-1 and MIP-2 are involved in T cell-mediated neutrophil recruitment. Appelberg R J Leukoc Biol; 1992 Sep; 52(3):303-6. PubMed ID: 1522389 [TBL] [Abstract][Full Text] [Related]
10. Distinct functions of interferon-gamma for chemokine expression in models of acute lung inflammation. Neumann B; Emmanuilidis K; Stadler M; Holzmann B Immunology; 1998 Dec; 95(4):512-21. PubMed ID: 9893039 [TBL] [Abstract][Full Text] [Related]
11. Resistance of virulent Mycobacterium avium to gamma interferon-mediated antimicrobial activity suggests additional signals for induction of mycobacteriostasis. Flórido M; Gonçalves AS; Silva RA; Ehlers S; Cooper AM; Appelberg R Infect Immun; 1999 Jul; 67(7):3610-8. PubMed ID: 10377146 [TBL] [Abstract][Full Text] [Related]
12. I/St mice hypersusceptible to Mycobacterium tuberculosis are resistant to M. avium. Kondratieva EV; Evstifeev VV; Kondratieva TK; Petrovskaya SN; Pichugin AV; Rubakova EI; Averbakh MM; Apt AS Infect Immun; 2007 Oct; 75(10):4762-8. PubMed ID: 17664269 [TBL] [Abstract][Full Text] [Related]
13. Modulation of Mycobacterium avium growth in vivo by cytokines: involvement of tumour necrosis factor in resistance to atypical mycobacteria. Denis M Clin Exp Immunol; 1991 Mar; 83(3):466-71. PubMed ID: 1900745 [TBL] [Abstract][Full Text] [Related]
14. Role of gamma delta T cells in immunopathology of pulmonary Mycobacterium avium infection in mice. Saunders BM; Frank AA; Cooper AM; Orme IM Infect Immun; 1998 Nov; 66(11):5508-14. PubMed ID: 9784564 [TBL] [Abstract][Full Text] [Related]
15. In vivo depletion of natural killer cell activity leads to enhanced multiplication of Mycobacterium avium complex in mice. Harshan KV; Gangadharam PR Infect Immun; 1991 Aug; 59(8):2818-21. PubMed ID: 1855997 [TBL] [Abstract][Full Text] [Related]
16. Regulatory effects of macrophage inflammatory protein 1alpha/CCL3 on the development of immunity to Cryptococcus neoformans depend on expression of early inflammatory cytokines. Olszewski MA; Huffnagle GB; Traynor TR; McDonald RA; Cook DN; Toews GB Infect Immun; 2001 Oct; 69(10):6256-63. PubMed ID: 11553568 [TBL] [Abstract][Full Text] [Related]
17. Neutrophils from Mycobacterium avium-infected mice produce TNF-alpha, IL-12, and IL-1 beta and have a putative role in early host response. Petrofsky M; Bermudez LE Clin Immunol; 1999 Jun; 91(3):354-8. PubMed ID: 10370382 [TBL] [Abstract][Full Text] [Related]
18. Interferon-gamma-dependent mechanisms of mycobacteria-induced pulmonary immunopathology: the role of angiostasis and CXCR3-targeted chemokines for granuloma necrosis. Aly S; Laskay T; Mages J; Malzan A; Lang R; Ehlers S J Pathol; 2007 Jul; 212(3):295-305. PubMed ID: 17534845 [TBL] [Abstract][Full Text] [Related]
19. The death-promoting molecule tumour necrosis factor-related apoptosis inducing ligand (TRAIL) is not required for the development of peripheral lymphopenia or granuloma necrosis during infection with virulent Mycobacterium avium. Borges M; Rosa GT; Appelberg R Clin Exp Immunol; 2011 Jun; 164(3):407-16. PubMed ID: 21470210 [TBL] [Abstract][Full Text] [Related]
20. Interleukin-12-stimulated natural killer cells can activate human macrophages to inhibit growth of Mycobacterium avium. Bermudez LE; Wu M; Young LS Infect Immun; 1995 Oct; 63(10):4099-104. PubMed ID: 7558325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]