BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9176130)

  • 1. Chimeric calsequestrin and its targeting to the junctional sarcoplasmic reticulum of skeletal muscle.
    Nori A; Nadalini KA; Martini A; Rizzuto R; Villa A; Volpe P
    Am J Physiol; 1997 May; 272(5 Pt 1):C1420-8. PubMed ID: 9176130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis and deletion of three phosphorylation sites of calsequestrin of skeletal muscle sarcoplasmic reticulum. Effects on intracellular targeting.
    Nori A; Furlan S; Patiri F; Cantini M; Volpe P
    Exp Cell Res; 2000 Oct; 260(1):40-9. PubMed ID: 11010809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of calsequestrin to the sarcoplasmic reticulum of skeletal muscle upon deletion of its glycosylation site.
    Nori A; Valle G; Massimino ML; Volpe P
    Exp Cell Res; 2001 Apr; 265(1):104-13. PubMed ID: 11281648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of calsequestrin to sarcoplasmic reticulum after deletions of its acidic carboxy terminus.
    Nori A; Gola E; Tosato S; Cantini M; Volpe P
    Am J Physiol; 1999 Nov; 277(5):C974-81. PubMed ID: 10564090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicle budding from endoplasmic reticulum is involved in calsequestrin routing to sarcoplasmic reticulum of skeletal muscles.
    Nori A; Bortoloso E; Frasson F; Valle G; Volpe P
    Biochem J; 2004 Apr; 379(Pt 2):505-12. PubMed ID: 14728599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calsequestrin targeting to sarcoplasmic reticulum of skeletal muscle fibers.
    Nori A; Valle G; Bortoloso E; Turcato F; Volpe P
    Am J Physiol Cell Physiol; 2006 Aug; 291(2):C245-53. PubMed ID: 16571864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topology of Homer 1c and Homer 1a in C2C12 myotubes and transgenic skeletal muscle fibers.
    Volpe P; Sandri C; Bortoloso E; Valle G; Nori A
    Biochem Biophys Res Commun; 2004 Apr; 316(3):884-92. PubMed ID: 15033484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of alpha-kinase-anchoring protein (alpha KAP) to sarcoplasmic reticulum and nuclei of skeletal muscle.
    Nori A; Lin PJ; Cassetti A; Villa A; Bayer KU; Volpe P
    Biochem J; 2003 Mar; 370(Pt 3):873-80. PubMed ID: 12470297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head-to-tail oligomerization of calsequestrin: a novel mechanism for heterogeneous distribution of endoplasmic reticulum luminal proteins.
    Gatti G; Trifari S; Mesaeli N; Parker JM; Michalak M; Meldolesi J
    J Cell Biol; 2001 Aug; 154(3):525-34. PubMed ID: 11489915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes.
    Brini M; De Giorgi F; Murgia M; Marsault R; Massimino ML; Cantini M; Rizzuto R; Pozzan T
    Mol Biol Cell; 1997 Jan; 8(1):129-43. PubMed ID: 9017601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of calsequestrin in L6 myoblasts: formation of endoplasmic reticulum subdomains and their evolution into discrete vacuoles where aggregates of the protein are specifically accumulated.
    Gatti G; Podini P; Meldolesi J
    Mol Biol Cell; 1997 Sep; 8(9):1789-803. PubMed ID: 9307974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The endoplasmic reticulum-sarcoplasmic reticulum connection. II. Postnatal differentiation of the sarcoplasmic reticulum in skeletal muscle fibers.
    Villa A; Podini P; Nori A; Panzeri MC; Martini A; Meldolesi J; Volpe P
    Exp Cell Res; 1993 Nov; 209(1):140-8. PubMed ID: 8223998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endoplasmic reticulum of rat liver contains two proteins closely related to skeletal sarcoplasmic reticulum Ca-ATPase and calsequestrin.
    Damiani E; Spamer C; Heilmann C; Salvatori S; Margreth A
    J Biol Chem; 1988 Jan; 263(1):340-3. PubMed ID: 2961745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching of the dominant calcium sequestering protein during skeletal muscle differentiation.
    Koyabu S; Imanaka-Yoshida K; Ioshii SO; Nakano T; Yoshida T
    Cell Motil Cytoskeleton; 1994; 29(3):259-70. PubMed ID: 7895290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of the endoplasmic reticulum and its relationship with the sarcoplasmic reticulum in skeletal myofibers.
    Kaisto T; Metsikkö K
    Exp Cell Res; 2003 Sep; 289(1):47-57. PubMed ID: 12941603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific protein-protein interactions of calsequestrin with junctional sarcoplasmic reticulum of skeletal muscle.
    Damiani E; Margreth A
    Biochem Biophys Res Commun; 1990 Nov; 172(3):1253-9. PubMed ID: 2123102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum.
    Jones LR; Zhang L; Sanborn K; Jorgensen AO; Kelley J
    J Biol Chem; 1995 Dec; 270(51):30787-96. PubMed ID: 8530521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of muscle calsequestrin in epithelial HeLa cells: distribution and functional role.
    Papazafiri P; Bossi M; Meldolesi J
    Biochim Biophys Acta; 1994 Sep; 1223(3):333-40. PubMed ID: 7918667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The endoplasmic-sarcoplasmic reticulum of smooth muscle: immunocytochemistry of vas deferens fibers reveals specialized subcompartments differently equipped for the control of Ca2+ homeostasis.
    Villa A; Podini P; Panzeri MC; Söling HD; Volpe P; Meldolesi J
    J Cell Biol; 1993 Jun; 121(5):1041-51. PubMed ID: 8388876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.