These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9176167)

  • 1. Multiple equilibria of cations with metabolites in muscle bioenergetics.
    Kushmerick MJ
    Am J Physiol; 1997 May; 272(5 Pt 1):C1739-47. PubMed ID: 9176167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW; Murray TW
    J Biol Chem; 1974 Sep; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract]   [Full Text] [Related]  

  • 3. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle.
    Robergs RA
    PLoS One; 2017; 12(12):e0189822. PubMed ID: 29267370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adjustment of K' to varying pH and pMg for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria permitting quantitative bioenergetic assessment.
    Golding EM; Teague WE; Dobson GP
    J Exp Biol; 1995 Aug; 198(Pt 8):1775-82. PubMed ID: 7636446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Availability of Mg2+, Na+, and K+-ATPase in the nuclei of the skeletal muscles of rabbits normally and during experimental muscular dystrophy].
    Sylakova AI; Konoplyts'ka OL; Huseva TN
    Ukr Biokhim Zh; 1975; 47(1):31-5. PubMed ID: 128169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjustment of K' for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria to varying temperature and ionic strength.
    Teague WE; Golding EM; Dobson GP
    J Exp Biol; 1996 Feb; 199(Pt 2):509-12. PubMed ID: 8930003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy changes and muscular contraction.
    Curtin NA; Woledge RC
    Physiol Rev; 1978 Jul; 58(3):690-761. PubMed ID: 28541
    [No Abstract]   [Full Text] [Related]  

  • 8. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Creatine kinase system and muscle energy metabolism].
    Chetverikova EP
    Zh Obshch Biol; 1981; 42(4):586-96. PubMed ID: 7025505
    [No Abstract]   [Full Text] [Related]  

  • 10. Analysis of metabolic control: new insights using scaled creatine kinase model.
    Connett RJ
    Am J Physiol; 1988 Jun; 254(6 Pt 2):R949-59. PubMed ID: 2837918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flip-flop model of energy interconversion by ATP synthetase.
    Repke KR; Schön R
    Acta Biol Med Ger; 1974; 33(1):K27-38. PubMed ID: 4278420
    [No Abstract]   [Full Text] [Related]  

  • 12. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 14. A simple model of aerobic metabolism: applications to work transitions in muscle.
    Funk CI; Clark A; Connett RJ
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C995-1005. PubMed ID: 2141761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism.
    Meyer RA; Kuchmerick MJ; Brown TR
    Am J Physiol; 1982 Jan; 242(1):C1-11. PubMed ID: 7058872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium regulation of the glycolytic pathway and the enzymes involved.
    Garfinkel L; Garfinkel D
    Magnesium; 1985; 4(2-3):60-72. PubMed ID: 2931560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of protein and calorie deficiencies in the rat on the energy-transfer reactions of the striated muscle.
    Taskar K; Tulpule PG
    Biochem J; 1964 Aug; 92(2):391-8. PubMed ID: 4284462
    [No Abstract]   [Full Text] [Related]  

  • 18. The importance of ATPase microenvironment in muscle fatigue: a hypothesis.
    Korge P; Campbell KB
    Int J Sports Med; 1995 Apr; 16(3):172-9. PubMed ID: 7649708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The supramolecular organization and functions creatine kinase of system].
    Roslyĭ IM; Abramov SV
    Usp Fiziol Nauk; 2005; 36(3):65-71. PubMed ID: 16152789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Regulation of ion transport in mitochondria by respiratory chain enzymes and ATPase].
    Novgorodov SA; Marshanskiĭ VN; Iaguzhinskiĭ LS
    Biokhimiia; 1984 Feb; 49(2):185-92. PubMed ID: 6324890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.