BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9176292)

  • 1. KCa-channel blockade prevents sustained pressure-induced depolarization in rat mesenteric small arteries.
    Wesselman JP; Schubert R; VanBavel ED; Nilsson H; Mulvany MJ
    Am J Physiol; 1997 May; 272(5 Pt 2):H2241-9. PubMed ID: 9176292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charybdotoxin-sensitive K+ channels regulate the myogenic tone in the resting state of arteries from spontaneously hypertensive rats.
    Asano M; Masuzawa-Ito K; Matsuda T
    Br J Pharmacol; 1993 Jan; 108(1):214-22. PubMed ID: 7679030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-operated calcium channels are essential for the myogenic responsiveness of cannulated rat mesenteric small arteries.
    Wesselman JP; VanBavel E; Pfaffendorf M; Spaan JA
    J Vasc Res; 1996; 33(1):32-41. PubMed ID: 8603124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K(Ca) channel blockers reveal hyperpolarization and relaxation to K+ in rat isolated mesenteric artery.
    Dora KA; Ings NT; Garland CJ
    Am J Physiol Heart Circ Physiol; 2002 Aug; 283(2):H606-14. PubMed ID: 12124208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of arterial tone by activation of calcium-dependent potassium channels.
    Brayden JE; Nelson MT
    Science; 1992 Apr; 256(5056):532-5. PubMed ID: 1373909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial and sustained phases of myogenic response of rat mesenteric small arteries.
    Chlopicki S; Nilsson H; Mulvany MJ
    Am J Physiol Heart Circ Physiol; 2001 Nov; 281(5):H2176-83. PubMed ID: 11668080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of pressure alterations on tone and vasomotion of isolated mesenteric small arteries of the rat.
    VanBavel E; Giezeman MJ; Mooij T; Spaan JA
    J Physiol; 1991 May; 436():371-83. PubMed ID: 2061837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological evidence for the activation of potassium channels as the mechanism involved in the hypotensive and vasorelaxant effect of dioclein in rat small resistance arteries.
    CĂ´rtes SF; Rezende BA; Corriu C; Medeiros IA; Teixeira MM; Lopes MJ; Lemos VS
    Br J Pharmacol; 2001 Jul; 133(6):849-58. PubMed ID: 11454658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of K(+)-channel blockers on ACh-induced hyperpolarization and relaxation in mesenteric arteries.
    Chen G; Cheung DW
    Am J Physiol; 1997 May; 272(5 Pt 2):H2306-12. PubMed ID: 9176299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential actions of charybdotoxin on central and daughter branch arteries of the rabbit isolated ear.
    Berman RS; Griffith TM
    Br J Pharmacol; 1997 Feb; 120(4):639-46. PubMed ID: 9051302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-activated potassium channels from coronary smooth muscle reconstituted in lipid bilayers.
    Toro L; Vaca L; Stefani E
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1779-89. PubMed ID: 1711788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of calcium-activated K+ channels in vasodilation induced by nitroglycerine, acetylcholine and nitric oxide.
    Khan SA; Mathews WR; Meisheri KD
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1327-35. PubMed ID: 7505330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries.
    Knot HJ; Nelson MT
    Am J Physiol; 1995 Jul; 269(1 Pt 2):H348-55. PubMed ID: 7631867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional role of charybdotoxin-sensitive K+ channels in the resting state of cerebral, coronary and mesenteric arteries of the dog.
    Asano M; Masuzawa-Ito K; Matsuda T; Suzuki Y; Oyama H; Shibuya M; Sugita K
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1277-85. PubMed ID: 7505329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological role of Ca(2+)-activated and voltage-dependent K+ currents in rabbit coronary myocytes.
    Leblanc N; Wan X; Leung PM
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1523-37. PubMed ID: 7517630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells.
    Zhang L; Bonev AD; Nelson MT; Mawe GM
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1552-61. PubMed ID: 7506489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Na+/Ca2+ exchanger to the regulation of myogenic tone in isolated rat small arteries.
    Horiguchi S; Watanabe J; Kato H; Baba S; Shinozaki T; Miura M; Fukuchi M; Kagaya Y; Shirato K
    Acta Physiol Scand; 2001 Oct; 173(2):167-73. PubMed ID: 11683674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary myogenic constriction antagonizes EDHF-mediated dilation: role of KCa channels.
    Gschwend S; Henning RH; de Zeeuw D; Buikema H
    Hypertension; 2003 Apr; 41(4):912-8. PubMed ID: 12642510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca(2+)-activated K+ channels.
    Cabell F; Weiss DS; Price JM
    Am J Physiol; 1994 Oct; 267(4 Pt 2):H1455-60. PubMed ID: 7943391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.