These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9176323)

  • 1. Characterization of ATP-sensitive potassium channels in freshly dissociated rabbit aortic endothelial cells.
    Katnik C; Adams DJ
    Am J Physiol; 1997 May; 272(5 Pt 2):H2507-11. PubMed ID: 9176323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes.
    Teramoto N; McMurray G; Brading AF
    Br J Pharmacol; 1997 Apr; 120(7):1229-40. PubMed ID: 9105697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ATP-sensitive potassium conductance in rabbit arterial endothelial cells.
    Katnik C; Adams DJ
    J Physiol; 1995 Jun; 485 ( Pt 3)(Pt 3):595-606. PubMed ID: 7562603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium channel modulation in rat portal vein by ATP depletion: a comparison with the effects of levcromakalim (BRL 38227).
    Noack T; Edwards G; Deitmer P; Weston AH
    Br J Pharmacol; 1992 Dec; 107(4):945-55. PubMed ID: 1467843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X; Light PE; Giles WR; French RJ
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes.
    Clapp LH
    Cardiovasc Res; 1995 Sep; 30(3):460-8. PubMed ID: 7585838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein.
    Beech DJ; Zhang H; Nakao K; Bolton TB
    Br J Pharmacol; 1993 Oct; 110(2):583-90. PubMed ID: 8242233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres.
    Light PE; Cordeiro JM; French RJ
    Cardiovasc Res; 1999 Nov; 44(2):356-69. PubMed ID: 10690312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two types of ATP-sensitive potassium channels in rat portal vein smooth muscle cells.
    Zhang HL; Bolton TB
    Br J Pharmacol; 1996 May; 118(1):105-14. PubMed ID: 8733582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice.
    Allard B; Rougier O
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties and pharmacological modification of ATP-sensitive K(+) channels in cat tracheal myocytes.
    Teramoto N; Nakashima T; Ito Y
    Br J Pharmacol; 2000 Jun; 130(3):625-35. PubMed ID: 10821791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KATP-channel-induced vasodilation is modulated by the Na,K-pump activity in rabbit coronary small arteries.
    Glavind-Kristensen M; Matchkov V; Hansen VB; Forman A; Nilsson H; Aalkjaer C
    Br J Pharmacol; 2004 Dec; 143(7):872-80. PubMed ID: 15504751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal activation of ATP-sensitive potassium channels in murine colonic smooth muscle cell.
    Koh SD; Bradley KK; Rae MG; Keef KD; Horowitz B; Sanders KM
    Biophys J; 1998 Oct; 75(4):1793-800. PubMed ID: 9746521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ATP-sensitive K(+) conductance in dissociated neurones from adult rat intracardiac ganglia.
    Hogg RC; Adams DJ
    J Physiol; 2001 Aug; 534(Pt 3):713-20. PubMed ID: 11483702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of ATP-sensitive potassium channels in human corporal smooth muscle cells.
    Lee SW; Wang HZ; Christ GJ
    Int J Impot Res; 1999 Aug; 11(4):179-88. PubMed ID: 10467517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-sensitive potassium channels in isolated rat aorta during physiologic, hypoxic, and low-glucose conditions.
    Hüsken BC; Pfaffendorf M; van Zwieten PA
    J Cardiovasc Pharmacol; 1997 Jan; 29(1):130-5. PubMed ID: 9007682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of effect of potassium channel openers on ATP-modulated potassium channels recorded from rat ventromedial hypothalamic neurones.
    Sellers AJ; Boden PR; Ashford ML
    Br J Pharmacol; 1992 Dec; 107(4):1068-74. PubMed ID: 1467829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.