BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 9176340)

  • 21. Regulation of antioxidant systems in response to anoxia and reoxygenation in Rana sylvatica.
    Gupta A; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2020 Jun; 243-244():110436. PubMed ID: 32247058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of unfolded protein response and ER-associated degradation under freezing, anoxia, and dehydration stresses in the freeze-tolerant wood frogs.
    Niles J; Singh G; Storey KB
    Cell Stress Chaperones; 2023 Jan; 28(1):61-77. PubMed ID: 36346580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of cDNA clones for the gamma subunit of Xenopus fibrinogen, the product of a coordinately regulated gene family.
    Bhattacharya A; Shepard AR; Moser DR; Holland LJ
    Mol Cell Endocrinol; 1990 Sep; 72(3):213-20. PubMed ID: 2289632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osmolyte regulation by TonEBP/NFAT5 during anoxia-recovery and dehydration-rehydration stresses in the freeze-tolerant wood frog (
    Al-Attar R; Zhang Y; Storey KB
    PeerJ; 2017; 5():e2797. PubMed ID: 28133564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of pyruvate kinase in skeletal muscle of the freeze tolerant wood frog, Rana sylvatica.
    Smolinski MB; Mattice JJL; Storey KB
    Cryobiology; 2017 Aug; 77():25-33. PubMed ID: 28600082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooling rate influences cryoprotectant distribution and organ dehydration in freezing wood frogs.
    Costanzo JP; Lee RE; Wright MF
    J Exp Zool; 1992 Apr; 261(4):373-8. PubMed ID: 1569408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of cell cycle components during exposure to anoxia or dehydration stress in the wood frog, Rana sylvatica.
    Roufayel R; Biggar KK; Storey KB
    J Exp Zool A Ecol Genet Physiol; 2011 Oct; 315(8):487-94. PubMed ID: 21796797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dehydration tolerance in wood frogs: a new perspective on development of amphibian freeze tolerance.
    Churchill TA; Storey KB
    Am J Physiol; 1993 Dec; 265(6 Pt 2):R1324-32. PubMed ID: 8285273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose and urea metabolic enzymes are differentially phosphorylated during freezing, anoxia, and dehydration exposures in a freeze tolerant frog.
    Hawkins LJ; Wang M; Zhang B; Xiao Q; Wang H; Storey KB
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():1-13. PubMed ID: 30710892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of the Rana sylvatica brevinin-1SY antimicrobial peptide during development and in dorsal and ventral skin in response to freezing, anoxia and dehydration.
    Katzenback BA; Holden HA; Falardeau J; Childers C; Hadj-Moussa H; Avis TJ; Storey KB
    J Exp Biol; 2014 Apr; 217(Pt 8):1392-401. PubMed ID: 24436376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of SMAD transcription factors during freezing in the freeze tolerant wood frog, Rana sylvatica.
    Aguilar OA; Hadj-Moussa H; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Nov; 201():64-71. PubMed ID: 27424790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liver freezing response of the freeze-tolerant wood frog, Rana sylvatica, in the presence and absence of glucose. I. Experimental measures.
    Devireddy RV; Barratt PR; Storey KB; Bischof JC
    Cryobiology; 1999 Jun; 38(4):310-26. PubMed ID: 10413574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial DNA methyltransferases and their regulation under freezing and dehydration stresses in the freeze-tolerant wood frog,
    Singh G; Storey KB
    Biochem Cell Biol; 2022 Apr; 100(2):171-178. PubMed ID: 35104156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RAGE against the stress: Mitochondrial suppression in hypometabolic hearts.
    Al-Attar R; Storey KB
    Gene; 2020 Nov; 761():145039. PubMed ID: 32777527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Freeze-responsive regulation of MEF2 proteins and downstream gene networks in muscles of the wood frog, Rana sylvatica.
    Aguilar OA; Hadj-Moussa H; Storey KB
    J Therm Biol; 2017 Jul; 67():1-8. PubMed ID: 28558931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Freezing stress adaptations: Critical elements to activate Nrf2 related antioxidant defense in liver and skeletal muscle of the freeze tolerant wood frogs.
    Zhang J; Gupta A; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 254():110573. PubMed ID: 33548505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TonEBP/NFAT5 regulates downstream osmoregulatory proteins during freeze-thaw stress in the wood frog.
    Zhang Y; Al-Attar R; Storey KB
    Cryobiology; 2017 Dec; 79():43-49. PubMed ID: 28947252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cryomicroscopic analysis of freezing in liver of the freeze-tolerant wood frog.
    Storey KB; Bischof J; Rubinsky B
    Am J Physiol; 1992 Jul; 263(1 Pt 2):R185-94. PubMed ID: 1636785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of NF-κB, FHC and SOD2 in response to oxidative stress in the freeze tolerant wood frog, Rana sylvatica.
    Gupta A; Brooks C; Storey KB
    Cryobiology; 2020 Dec; 97():28-36. PubMed ID: 33080279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo protein biosynthesis responses to water stresses in wood frogs: freeze-thaw and dehydration-rehydration.
    Storey KB; Storey JM; Chruchill TA
    Cryobiology; 1997 May; 34(3):200-13. PubMed ID: 9160993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.