These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 9177028)

  • 1. Extracellular components implicated in the stationary organization of the actin cytoskeleton in mesophyll cells of Vallisneria.
    Ryu JH; Mizuno K; Takagi S; Nagai R
    Plant Cell Physiol; 1997 Apr; 38(4):420-32. PubMed ID: 9177028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stationary organization of the actin cytoskeleton in Vallisneria: the role of stable microfilaments at the end walls.
    Ryu JH; Takagi S; Nagai R
    J Cell Sci; 1995 Apr; 108 ( Pt 4)():1531-9. PubMed ID: 7615673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motile apparatus in Vallisneria leaf cells. I. Organization of microfilaments.
    Yamaguchi Y; Nagai R
    J Cell Sci; 1981 Apr; 48():193-205. PubMed ID: 6792210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ transient induced by extracellular changes in osmotic pressure in Arabidopsis leaves: differential involvement of cell wall-plasma membrane adhesion.
    Hayashi T; Harada A; Sakai T; Takagi S
    Plant Cell Environ; 2006 Apr; 29(4):661-72. PubMed ID: 17080616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+-dependent cessation of cytoplasmic streaming induced by hypertonic treatment in Vallisneria mesophyll cells: possible role of cell wall-plasma membrane adhesion.
    Hayashi T; Takagi S
    Plant Cell Physiol; 2003 Oct; 44(10):1027-36. PubMed ID: 14581627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light.
    Sakai Y; Takagi S
    Planta; 2005 Aug; 221(6):823-30. PubMed ID: 15809866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells.
    Liebe S; Menzel D
    Biol Cell; 1995; 85(2-3):207-22. PubMed ID: 8785522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain-specific mechanosensory transmission of osmotic and enzymatic cell wall disturbances to the actin cytoskeleton.
    Wojtaszek P; Baluska F; Kasprowicz A; Luczak M; Volkmann D
    Protoplasma; 2007; 230(3-4):217-30. PubMed ID: 17458636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrinogen induces adhesion, spreading, and microfilament organization of human endothelial cells in vitro.
    Dejana E; Colella S; Languino LR; Balconi G; Corbascio GC; Marchisio PC
    J Cell Biol; 1987 May; 104(5):1403-11. PubMed ID: 2437130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism.
    Braun M; Wasteneys GO
    Planta; 1998 May; 205(1):39-50. PubMed ID: 9599803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filamentous actin in paramecium cells: functional and structural changes correlated with phalloidin affinity labeling in vivo.
    Kersken H; Momayezi M; Braun C; Plattner H
    J Histochem Cytochem; 1986 Apr; 34(4):455-65. PubMed ID: 3512697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfilaments: dynamic arrays in higher plant cells.
    Seagull RW; Falconer MM; Weerdenburg CA
    J Cell Biol; 1987 Apr; 104(4):995-1004. PubMed ID: 3558488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress fibers in the splenic sinus endothelium in situ: molecular structure, relationship to the extracellular matrix, and contractility.
    Drenckhahn D; Wagner J
    J Cell Biol; 1986 May; 102(5):1738-47. PubMed ID: 3084499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis.
    Tominaga M; Yokota E; Vidali L; Sonobe S; Hepler PK; Shimmen T
    Planta; 2000 Apr; 210(5):836-43. PubMed ID: 10805457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of actin-dependent cytoplasmic motility by type II phytochrome occurs within seconds in Vallisneria gigantea epidermal cells.
    Takagi S; Kong SG; Mineyuki Y; Furuya M
    Plant Cell; 2003 Feb; 15(2):331-45. PubMed ID: 12566576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contraction-mediated pinocytosis of RGD-peptide by dermal fibroblasts: inhibition of matrix attachment blocks contraction and disrupts microfilament organisation.
    Sethi KK; Mudera V; Sutterlin R; Baschong W; Brown RA
    Cell Motil Cytoskeleton; 2002 Aug; 52(4):231-41. PubMed ID: 12112137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea.
    Sakurai N; Domoto K; Takagi S
    Planta; 2005 Apr; 221(1):66-74. PubMed ID: 15843965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara.
    Nothnagel EA; Barak LS; Sanger JW; Webb WW
    J Cell Biol; 1981 Feb; 88(2):364-72. PubMed ID: 6894146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of actin filaments during cell shaping in developing mesophyll of wheat (Triticum aestivum L.).
    Jung G; Wernicke W
    Eur J Cell Biol; 1991 Oct; 56(1):139-46. PubMed ID: 1724752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cytoplasmic streaming in Vallisneria mesophyll cells.
    Takagi S; Nagai R
    J Cell Sci; 1983 Jul; 62():385-405. PubMed ID: 6413519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.