These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9177036)

  • 21. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity.
    Kuang A; Popova A; McClure G; Musgrave ME
    Int J Plant Sci; 2005 Jan; 166(1):85-96. PubMed ID: 15747444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana.
    Chen Y; Asano T; Fujiwara MT; Yoshida S; Machida Y; Yoshioka Y
    Plant Cell Physiol; 2009 May; 50(5):956-69. PubMed ID: 19318374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of microgravity on root-cap regeneration and the structure of columella cells in Zea mays.
    Moore R; McClelen CE; Fondren WM; Wang CL
    Am J Bot; 1987; 74(2):218-23. PubMed ID: 11539100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana.
    Kiss JZ; Hertel R; Sack FD
    Planta; 1989 Feb; 177(2):198-206. PubMed ID: 24212342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.
    Link BM; Busse JS; Stankovic B
    Astrobiology; 2014 Oct; 14(10):866-75. PubMed ID: 25317938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of microgravity and clinorotation on stress ethylene production in two starchless mutants of Arabidopsis thaliana.
    Gallegos GL; Hilaire EM; Peterson BV; Brown CS; Guikema JA
    J Gravit Physiol; 1995; 2(1):P153-4. PubMed ID: 11538908
    [No Abstract]   [Full Text] [Related]  

  • 27. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.
    Scherer GF; Pietrzyk P
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():97-106. PubMed ID: 24373011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gravitropism in a starchless mutant of Arabidopsis : Implications for the starch-statolith theory of gravity sensing.
    Caspar T; Pickard BG
    Planta; 1989 Feb; 177(2):185-97. PubMed ID: 24212341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphometric analyses of petioles of seedlings grown in a spaceflight experiment.
    Johnson CM; Subramanian A; Edelmann RE; Kiss JZ
    J Plant Res; 2015 Nov; 128(6):1007-16. PubMed ID: 26376793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis.
    Kiss JZ; Guisinger MM; Miller AJ; Stackhouse KS
    Plant Cell Physiol; 1997 May; 38(5):518-25. PubMed ID: 9210329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of AtMinE1 in plastid morphogenesis in various tissues of Arabidopsis thaliana.
    Kojo KH; Fujiwara MT; Itoh RD
    Biosci Biotechnol Biochem; 2009 Dec; 73(12):2632-9. PubMed ID: 19966487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development.
    Kwon T; Sparks JA; Nakashima J; Allen SN; Tang Y; Blancaflor EB
    Am J Bot; 2015 Jan; 102(1):21-35. PubMed ID: 25587145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses.
    Kruse CPS; Meyers AD; Basu P; Hutchinson S; Luesse DR; Wyatt SE
    BMC Plant Biol; 2020 May; 20(1):237. PubMed ID: 32460700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of arc3, arc5 and arc6 mutations on plastid morphology and stromule formation in green and nongreen tissues of Arabidopsis thaliana.
    Holzinger A; Kwok EY; Hanson MR
    Photochem Photobiol; 2008; 84(6):1324-35. PubMed ID: 18764889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composition and physical properties of starch in microgravity-grown plants.
    Kuznetsov OA; Brown CS; Levine HG; Piastuch WC; Sanwo-Lewandowski MM; Hasenstein KH
    Adv Space Res; 2001; 28(4):651-8. PubMed ID: 11803968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana.
    Zupanska AK; Denison FC; Ferl RJ; Paul AL
    Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A ground-based study for a shuttle BRIC experiment on gravity effects on gene expression.
    Reddy AS; Kao YL; Mykles DL; Sadeh WZ; Wheeler RM
    Adv Space Res; 1998; 21(8-9):1219-24. PubMed ID: 11541375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network Analysis of Gene Transcriptions of
    Manian V; Orozco J; Gangapuram H; Janwa H; Agrinsoni C
    Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33668919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in vacuolation in the root apex cells of soybean seedlings in microgravity.
    Klymchuk DO; Kordyum EL; Vorobyova TV; Chapman DK; Brown CS
    Adv Space Res; 2003; 31(10):2283-8. PubMed ID: 14686444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris.
    Kiss JZ; Sack FD
    Planta; 1989; 180():123-30. PubMed ID: 11540920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.