BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 9177582)

  • 21. [Physical exercise, oxidative stress and damage].
    Apor P; Rádi A
    Orv Hetil; 2006 Jun; 147(22):1025-31. PubMed ID: 16913092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of reactive oxygen and nitrogen species in contracting skeletal muscle: potential impact on aging.
    Reid MB; Durham WJ
    Ann N Y Acad Sci; 2002 Apr; 959():108-16. PubMed ID: 11976190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aging and acute exercise enhance free radical generation in rat skeletal muscle.
    Bejma J; Ji LL
    J Appl Physiol (1985); 1999 Jul; 87(1):465-70. PubMed ID: 10409609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation to exercise-induced oxidative stress: from muscle to brain.
    Radak Z; Taylor AW; Ohno H; Goto S
    Exerc Immunol Rev; 2001; 7():90-107. PubMed ID: 11579750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exercise and skeletal muscle ageing: cellular and molecular mechanisms.
    McArdle A; Vasilaki A; Jackson M
    Ageing Res Rev; 2002 Feb; 1(1):79-93. PubMed ID: 12039450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of oxidative stress during exercise in the horse.
    Williams CA
    J Anim Sci; 2016 Oct; 94(10):4067-4075. PubMed ID: 27898872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aging, training and exercise. A review of effects on plasma glutathione and lipid peroxides.
    Kretzschmar M; Müller D
    Sports Med; 1993 Mar; 15(3):196-209. PubMed ID: 8451550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!
    Cobley JN; Moult PR; Burniston JG; Morton JP; Close GL
    Biogerontology; 2015 Apr; 16(2):249-64. PubMed ID: 25537184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upregulation of uncoupling protein-3 in skeletal muscle during exercise: a potential antioxidant function.
    Jiang N; Zhang G; Bo H; Qu J; Ma G; Cao D; Wen L; Liu S; Ji LL; Zhang Y
    Free Radic Biol Med; 2009 Jan; 46(2):138-45. PubMed ID: 18977294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The contribution of reactive oxygen species to sarcopenia and muscle ageing.
    Fulle S; Protasi F; Di Tano G; Pietrangelo T; Beltramin A; Boncompagni S; Vecchiet L; Fanò G
    Exp Gerontol; 2004 Jan; 39(1):17-24. PubMed ID: 14724060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function.
    Wei YH; Lu CY; Lee HC; Pang CY; Ma YS
    Ann N Y Acad Sci; 1998 Nov; 854():155-70. PubMed ID: 9928427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle.
    Radák Z; Naito H; Kaneko T; Tahara S; Nakamoto H; Takahashi R; Cardozo-Pelaez F; Goto S
    Pflugers Arch; 2002 Nov; 445(2):273-8. PubMed ID: 12457248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulation of systemic oxygen flux by acute exercise and normobaric hypoxia: implications for reactive oxygen species generation.
    Davison GW; Morgan RM; Hiscock N; Garcia JM; Grace F; Boisseau N; Davies B; Castell L; McEneny J; Young IS; Hullin D; Ashton T; Bailey DM
    Clin Sci (Lond); 2006 Jan; 110(1):133-41. PubMed ID: 16197367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function?
    Jackson MJ
    Free Radic Biol Med; 2008 Jan; 44(2):132-41. PubMed ID: 18191749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model.
    Li FH; Sun L; Zhu M; Li T; Gao HE; Wu DS; Zhu L; Duan R; Liu TC
    Exp Gerontol; 2018 Nov; 113():150-162. PubMed ID: 30308288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncoupling of changes in skeletal muscle beta-adrenergic receptor density and aerobic capacity during the aging process.
    Farrar RP; Monnin KA; Fordyce DE; Walters TJ
    Aging (Milano); 1997; 9(1-2):153-8. PubMed ID: 9177599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative stress during exercise: implication of antioxidant nutrients.
    Ji LL
    Free Radic Biol Med; 1995 Jun; 18(6):1079-86. PubMed ID: 7628730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity.
    Vasilaki A; Mansouri A; Van Remmen H; van der Meulen JH; Larkin L; Richardson AG; McArdle A; Faulkner JA; Jackson MJ
    Aging Cell; 2006 Apr; 5(2):109-17. PubMed ID: 16626390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exercise training in late middle-aged male Fischer 344 x Brown Norway F1-hybrid rats improves skeletal muscle aerobic function.
    Betik AC; Baker DJ; Krause DJ; McConkey MJ; Hepple RT
    Exp Physiol; 2008 Jul; 93(7):863-71. PubMed ID: 18356556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free radical theory of aging.
    Biesalski HK
    Curr Opin Clin Nutr Metab Care; 2002 Jan; 5(1):5-10. PubMed ID: 11790942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.