These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9178226)

  • 21. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of adaptive changes of vestibular system on cardiovascular regulation and orthostatic tolerance].
    Wang LJ; Liu ZQ; He M; Ren W
    Space Med Med Eng (Beijing); 2001 Jun; 14(3):225-9. PubMed ID: 11892740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of head-to-trunk position on the direction of arm movements before, during, and after space flight.
    Berger M; Lechner-Steinleitner S; Kozlovskaya I; Holzmüller G; Mescheriakov S; Sokolov A; Gerstenbrand F
    J Vestib Res; 1998; 8(5):341-54. PubMed ID: 9770653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress under normal conditions, hypokinesia simulating weightlessness, and during flights in space.
    Grigor'ev AI; Fedorov BM
    Hum Physiol; 1996; 22(2):139-47. PubMed ID: 11541518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of reafference in recalibration of limb movement control and locomotion.
    Lackner JR; DiZio P
    J Vestib Res; 1997; 7(4):303-10. PubMed ID: 9218244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Head pitch movement and vestibular neuronal activity in response to otolith stimulation of monkeys in space.
    Badakva AM; Zalkind DV; Miller NV; Riazansky SN
    J Gravit Physiol; 2000 Jan; 7(1):S99-105. PubMed ID: 11543474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rat head direction cell responses in zero-gravity parabolic flight.
    Taube JS; Stackman RW; Calton JL; Oman CM
    J Neurophysiol; 2004 Nov; 92(5):2887-997. PubMed ID: 15212426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Evaluation of the antiorthostatic reactions of the cerebral circulation].
    Zhernavkov AF
    Kosm Biol Aviakosm Med; 1979; 13(3):67-71. PubMed ID: 449268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-flight and postflight changes in skeletal muscles of SLS-1 and SLS-2 spaceflown rats.
    Riley DA; Ellis S; Slocum GR; Sedlak FR; Bain JL; Krippendorf BB; Lehman CT; Macias MY; Thompson JL; Vijayan K; De Bruin JA
    J Appl Physiol (1985); 1996 Jul; 81(1):133-44. PubMed ID: 8828655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Structural-metabolic plasticity of mammalian skeletal muscles in hypokinesis and weightlessness].
    Shenkman BS
    Aviakosm Ekolog Med; 2002; 36(3):3-14. PubMed ID: 12222068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulating reduced gravity: a review of biomechanical issues pertaining to human locomotion.
    Davis BL; Cavanagh PR
    Aviat Space Environ Med; 1993 Jun; 64(6):557-66. PubMed ID: 8338506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The physical price of a ticket into space.
    Hawkey A
    J Br Interplanet Soc; 2003; 56(5-6):152-9. PubMed ID: 14552355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of motor and visual experience during development of bipedal locomotion in chicks.
    Muir GD; Gowri KS
    J Neurophysiol; 2005 Dec; 94(6):3691-7. PubMed ID: 16093327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-plane analysis of gaze stabilization to high acceleration head thrusts: a continuum across normal subjects and patients with loss of vestibular function.
    Peng GC; Zee DS; Minor LB
    J Neurophysiol; 2004 Apr; 91(4):1763-81. PubMed ID: 14657187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive responses in eye-head-hand coordination following exposures to a virtual environment as a possible space flight analog.
    Harm DL; Taylor LC; Bloomberg JJ
    J Gravit Physiol; 2007 Jul; 14(1):P83-4. PubMed ID: 18372711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural and neuroendocrine adaptations to microgravity and ground-based models of microgravity.
    Edgerton VR; Roy RR; Recktenwald MR; Hodgson JA; Grindeland RE; Kozlovskaya I
    J Gravit Physiol; 2000 Dec; 7(3):45-52. PubMed ID: 12124184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Context-specific adaptation and its significance for neurovestibular problems of space flight.
    Shelhamer M; Zee DS
    J Vestib Res; 2003; 13(4-6):345-62. PubMed ID: 15096677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the mechanisms of changes in skeletal muscles in the weightless environment.
    Oganov VS; Potapov AN
    Life Sci Space Res; 1976; 14():137-43. PubMed ID: 11977271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The International Space Station in the 21st century: studies of space biology and future possibility of human beings].
    Atomi Y; Ishiura S
    Biol Sci Space; 2001 Oct; 15(3):220-3. PubMed ID: 11997613
    [No Abstract]   [Full Text] [Related]  

  • 40. Space adaptation syndrome: multiple etiological factors and individual differences.
    Lackner JR; DiZio P
    J Wash Acad Sci; 1991 Jun; 81(2):89-100. PubMed ID: 11540716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.