These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 9178737)

  • 1. Technique to control pH in vicinity of biodegrading PLA-PGA implants.
    Agrawal CM; Athanasiou KA
    J Biomed Mater Res; 1997; 38(2):105-14. PubMed ID: 9178737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning electron microscopic study of cell attachment to biodegradable polymer implants.
    Zislis T; Mark DE; Cerbas EL; Hollinger JO
    J Oral Implantol; 1989; 15(3):160-7. PubMed ID: 2561760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New technique to extend the useful life of a biodegradable cartilage implant.
    Spain TL; Agrawal CM; Athanasiou KA
    Tissue Eng; 1998; 4(4):343-52. PubMed ID: 9916167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scanning electron microscopic study of in vitro toxicity of ethylene-oxide-sterilized bone repair materials.
    Zislis T; Martin SA; Cerbas E; Heath JR; Mansfield JL; Hollinger JO
    J Oral Implantol; 1989; 15(1):41-6. PubMed ID: 2561372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of poly (DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers--effect of size and shape of the fillers--.
    Tsunoda M
    Dent Mater J; 2003 Sep; 22(3):371-82. PubMed ID: 14621002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits.
    Cohen SB; Meirisch CM; Wilson HA; Diduch DR
    Biomaterials; 2003 Jul; 24(15):2653-60. PubMed ID: 12726719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthopaedic applications for PLA-PGA biodegradable polymers.
    Athanasiou KA; Agrawal CM; Barber FA; Burkhart SS
    Arthroscopy; 1998 Oct; 14(7):726-37. PubMed ID: 9788368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers.
    Athanasiou KA; Niederauer GG; Agrawal CM
    Biomaterials; 1996 Jan; 17(2):93-102. PubMed ID: 8624401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein release kinetics of a biodegradable implant for fracture non-unions.
    Agrawal CM; Best J; Heckman JD; Boyan BD
    Biomaterials; 1995 Nov; 16(16):1255-60. PubMed ID: 8589196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of PLA/GA polymers: increasing complexity.
    Vert M; Mauduit J; Li S
    Biomaterials; 1994 Dec; 15(15):1209-13. PubMed ID: 7703316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo.
    Lohmann CH; Schwartz Z; Niederauer GG; Carnes DL; Dean DD; Boyan BD
    Biomaterials; 2000 Jan; 21(1):49-61. PubMed ID: 10619678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.
    Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F
    Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft tissue response in the rabbit larynx following implantation of LactoSorb (PLA/PGA copolymer) prosthesis for medialization laryngoplasty.
    Dufresne AM; Lafreniere D
    J Voice; 2000 Sep; 14(3):387-97. PubMed ID: 11021506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios.
    Miller RA; Brady JM; Cutright DE
    J Biomed Mater Res; 1977 Sep; 11(5):711-9. PubMed ID: 893490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of craniofacial PLLA/PGA copolymer bioabsorbable screws.
    Pietrzak WS; Eppley BL
    J Craniofac Surg; 2006 Mar; 17(2):331-6. PubMed ID: 16633183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous-coated titanium implant impregnated with a biodegradable protein delivery system.
    Agrawal CM; Pennick A; Wang X; Schenck RC
    J Biomed Mater Res; 1997 Sep; 36(4):516-21. PubMed ID: 9294767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gel casting of resorbable polymers. 2. In-vitro degradation of bone graft substitutes.
    Coombes AG; Heckman JD
    Biomaterials; 1992; 13(5):297-307. PubMed ID: 1600032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable polymeric device for sustained intravitreal release of ganciclovir in rabbits.
    Hashizoe M; Ogura Y; Takanashi T; Kunou N; Honda Y; Ikada Y
    Curr Eye Res; 1997 Jul; 16(7):633-9. PubMed ID: 9222079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.