BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9178738)

  • 1. Autosterilization of biodegradable implants by injection molding process.
    König C; Ruffieux K; Wintermantel E; Blaser J
    J Biomed Mater Res; 1997; 38(2):115-9. PubMed ID: 9178738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas.
    Gogolewski S; Mainil-Varlet P; Dillon JG
    J Biomed Mater Res; 1996 Oct; 32(2):227-35. PubMed ID: 8884500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants.
    Rothen-Weinhold A; Besseghir K; Vuaridel E; Sublet E; Oudry N; Kubel F; Gurny R
    Eur J Pharm Biopharm; 1999 Sep; 48(2):113-21. PubMed ID: 10469929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes.
    Wang Z; Roberge C; Dao LH; Wan Y; Shi G; Rouabhia M; Guidoin R; Zhang Z
    J Biomed Mater Res A; 2004 Jul; 70(1):28-38. PubMed ID: 15174106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering.
    Holy CE; Cheng C; Davies JE; Shoichet MS
    Biomaterials; 2001 Jan; 22(1):25-31. PubMed ID: 11085380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats.
    Majola A; Vainionpää S; Vihtonen K; Mero M; Vasenius J; Törmälä P; Rokkanen P
    Clin Orthop Relat Res; 1991 Jul; (268):260-9. PubMed ID: 2060218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sterilization on the physicochemical properties of molded poly(L-lactic acid).
    Peniston SJ; Choi SJ
    J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):67-77. PubMed ID: 16767732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite nanoparticles in poly-D,L-lactic acid coatings on porous titanium implants conducts bone formation.
    Jensen T; Jakobsen T; Baas J; Nygaard JV; Dolatshahi-Pirouz A; Hovgaard MB; Foss M; Bünger C; Besenbacher F; Søballe K
    J Biomed Mater Res A; 2010 Dec; 95(3):665-72. PubMed ID: 20725972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications.
    Hutmacher D; Hürzeler MB; Schliephake H
    Int J Oral Maxillofac Implants; 1996; 11(5):667-78. PubMed ID: 8908867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of biodegradable PLA polymeric blends.
    Chen CC; Chueh JY; Tseng H; Huang HM; Lee SY
    Biomaterials; 2003 Mar; 24(7):1167-73. PubMed ID: 12527257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of three-dimensional poly(d,l-lactic acid) scaffolds with baicalin: a histological study.
    Cai K; Yao K; Yang Z; Li X
    Acta Biomater; 2007 Jul; 3(4):597-605. PubMed ID: 17291842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo study on the histocompatibility and degradation behavior of biodegradable poly(trimethylene carbonate-co-D,L-lactide).
    Guo Q; Lu Z; Zhang Y; Li S; Yang J
    Acta Biochim Biophys Sin (Shanghai); 2011 Jun; 43(6):433-40. PubMed ID: 21571741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of poly(D,L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry.
    Mahjoubi H; Kinsella JM; Murshed M; Cerruti M
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9975-87. PubMed ID: 24965034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [In vivo degradation and tissue compatibility of poly-L-lactide/beta-tricalcium phosphate composite rods for internal fixation of bone fractures].
    Li X; Zou J; Zhu G; Qi X; Pu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):81-6. PubMed ID: 17333897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds.
    Lee YH; Lee JH; An IG; Kim C; Lee DS; Lee YK; Nam JD
    Biomaterials; 2005 Jun; 26(16):3165-72. PubMed ID: 15603811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices.
    Zhao Y; Zhu B; Wang Y; Liu C; Shen C
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110041. PubMed ID: 31546462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro.
    Meng B; Wang J; Zhu N; Meng QY; Cui FZ; Xu YX
    J Mater Sci Mater Med; 2006 Jul; 17(7):611-7. PubMed ID: 16770545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.