These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 9178742)

  • 1. Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid sol-gel material.
    Yang JM; Lu CS; Hsu YG; Shih CH
    J Biomed Mater Res; 1997; 38(2):143-54. PubMed ID: 9178742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of epoxy-SiO2 hybrid sol-gel material for bone cement.
    Yang JM; Shih CH; Chang CN; Lin FH; Jiang JM; Hsu YG; Su WY; See LC
    J Biomed Mater Res A; 2003 Jan; 64(1):138-46. PubMed ID: 12483706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of acrylic bone cement using dynamic mechanical analysis.
    Yang JM; Li HM; Yang MC; Shih CH
    J Biomed Mater Res; 1999; 48(1):52-60. PubMed ID: 10029150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of crosslinking agents on acrylic bone cements based on poly(methylmethacrylate).
    Deb S; Vazquez B; Bonfield W
    J Biomed Mater Res; 1997 Dec; 37(4):465-73. PubMed ID: 9407294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of alpha-tricalcium phosphate (TCP) as powders and as an aqueous dispersion to modify processing, microstructure, and mechanical properties of polymethylmethacrylate (PMMA) bone cements and to produce bone-substitute compounds.
    Beruto DT; Mezzasalma SA; Capurro M; Botter R; Cirillo P
    J Biomed Mater Res; 2000 Mar; 49(4):498-505. PubMed ID: 10602083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation.
    Boger A; Wheeler K; Montali A; Gruskin E
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and biological properties of two types of bioactive bone cements containing MgO-CaO-SiO2-P2O5-CaF2 glass and glass-ceramic powder.
    Tamura J; Kawanabe K; Kobayashi M; Nakamura T; Kokubo T; Yoshihara S; Shibuya T
    J Biomed Mater Res; 1996 Jan; 30(1):85-94. PubMed ID: 8788109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovations in acrylic bone cement and application equipment.
    Kindt-Larsen T; Smith DB; Jensen JS
    J Appl Biomater; 1995; 6(1):75-83. PubMed ID: 7703541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyisobutylene-toughened poly(methyl methacrylate): III. PMMA-l-PIB networks as bone cements.
    Kennedy JP; Askew MJ; Richard GC
    J Biomater Sci Polym Ed; 1993; 4(5):445-9. PubMed ID: 8241061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate.
    Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A
    J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of chitosan/beta-tricalcium phosphate microspheres as a constituent to PMMA cement.
    Lin LC; Chang SJ; Kuo SM; Chen SF; Kuo CH
    J Mater Sci Mater Med; 2005 Jun; 16(6):567-74. PubMed ID: 15928873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of polymerization of acrylic bone cement: effect of HEMA and EGDMA.
    Yang JM
    J Biomed Mater Res; 1998; 43(1):54-61. PubMed ID: 9509344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Osteogenic Behaviors around Hydrophilic and Radical-Free 4-META/MMA-TBB: Implications of an Osseointegrating Bone Cement.
    Sugita Y; Okubo T; Saita M; Ishijima M; Torii Y; Tanaka M; Iwasaki C; Sekiya T; Tabuchi M; Mohammadzadeh Rezaei N; Taniyama T; Sato N; Saruta J; Hasegawa M; Hirota M; Park W; Lee MC; Maeda H; Ogawa T
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short- and long-term effects of vertebroplastic bone cement on cancellous bone.
    Quan R; Ni Y; Zhang L; Xu J; Zheng X; Yang D
    J Mech Behav Biomed Mater; 2014 Jul; 35():102-10. PubMed ID: 24762857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of BaSO4 on the fatigue crack propagation rate of PMMA bone cement.
    Molino LN; Topoleski LD
    J Biomed Mater Res; 1996 May; 31(1):131-7. PubMed ID: 8731157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of new bone cement utilizing low toxicity monomers.
    Ono S; Kadoma Y; Morita S; Takakuda K
    J Med Dent Sci; 2008 Jun; 55(2):189-96. PubMed ID: 19697507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of hydroxyapatite filled 4-META/MMA-TBB adhesive bone cement in vitro and in vivo environment.
    Lee RR; Ogiso M; Watanabe A; Ishihara K
    J Biomed Mater Res; 1997; 38(1):11-6. PubMed ID: 9086412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.