BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 9179150)

  • 21. Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing.
    Dudley-Javoroski S; Littmann AE; Iguchi M; Shields RK
    J Appl Physiol (1985); 2008 Jun; 104(6):1574-82. PubMed ID: 18436697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contractile properties of human nasal dilator motor units.
    Mateika JH; Essif EG; Dellorusso C; Fregosi RF
    J Neurophysiol; 1998 Jan; 79(1):371-8. PubMed ID: 9425206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous motor unit behavior in human thenar muscles after spinal cord injury.
    Zijdewind I; Thomas CK
    Muscle Nerve; 2001 Jul; 24(7):952-62. PubMed ID: 11410924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human spinal cord injury: motor unit properties and behaviour.
    Thomas CK; Bakels R; Klein CS; Zijdewind I
    Acta Physiol (Oxf); 2014 Jan; 210(1):5-19. PubMed ID: 23901835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of training on contractile properties of paralyzed quadriceps muscle.
    Gerrits HL; Hopman MT; Sargeant AJ; Jones DA; De Haan A
    Muscle Nerve; 2002 Apr; 25(4):559-67. PubMed ID: 11932974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic classification of motor unit potentials in surface EMG recorded from thenar muscles paralyzed by spinal cord injury.
    Winslow J; Dididze M; Thomas CK
    J Neurosci Methods; 2009 Dec; 185(1):165-77. PubMed ID: 19761794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Do additional inputs change maximal voluntary motor unit firing rates after spinal cord injury?
    Zijdewind I; Gant K; Bakels R; Thomas CK
    Neurorehabil Neural Repair; 2012 Jan; 26(1):58-67. PubMed ID: 21903974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Examination of the Motor Unit Number Index (MUNIX) in muscles paralyzed by spinal cord injury.
    Li X; Jahanmiri-Nezhad F; Rymer WZ; Zhou P
    IEEE Trans Inf Technol Biomed; 2012 Nov; 16(6):1143-9. PubMed ID: 22491097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.
    Koshland GF; Galloway JC; Farley B
    Exp Brain Res; 2005 Jul; 164(2):133-47. PubMed ID: 16028034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal stimulation of paralyzed muscle after human spinal cord injury.
    Stein RB; Gordon T; Jefferson J; Sharfenberger A; Yang JF; de Zepetnek JT; Belanger M
    J Appl Physiol (1985); 1992 Apr; 72(4):1393-400. PubMed ID: 1317372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans.
    Shields RK; Law LF; Reiling B; Sass K; Wilwert J
    J Appl Physiol (1985); 1997 May; 82(5):1499-507. PubMed ID: 9134899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reproducibility of contractile properties of the human paralysed and non-paralysed quadriceps muscle.
    Gerrits HL; Hopman MT; Sargeant AJ; de Haan A
    Clin Physiol; 2001 Jan; 21(1):105-13. PubMed ID: 11168304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand.
    Fuglevand AJ; Macefield VG; Bigland-Ritchie B
    J Neurophysiol; 1999 Apr; 81(4):1718-29. PubMed ID: 10200207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Muscle Nerve; 2007 Apr; 35(4):471-8. PubMed ID: 17212347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sag during unfused tetanic contractions in rat triceps surae motor units.
    Carp JS; Herchenroder PA; Chen XY; Wolpaw JR
    J Neurophysiol; 1999 Jun; 81(6):2647-61. PubMed ID: 10368385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of contractile properties of single motor units in human intrinsic and extrinsic finger muscles.
    McNulty PA; Falland KJ; Macefield VG
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):445-56. PubMed ID: 10896733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effectiveness of progressively increasing stimulation frequency and intensity to maintain paralyzed muscle force during repetitive activation in persons with spinal cord injury.
    Chou LW; Lee SC; Johnston TE; Binder-Macleod SA
    Arch Phys Med Rehabil; 2008 May; 89(5):856-64. PubMed ID: 18452732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury.
    Thomas CK; Häger CK; Klein CS
    J Neurophysiol; 2017 Feb; 117(2):684-691. PubMed ID: 27852734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of knee joint angle on muscle properties of paralyzed and nonparalyzed human knee extensors.
    Gerrits KH; Maganaris CN; Reeves ND; Sargeant AJ; Jones DA; de Haan A
    Muscle Nerve; 2005 Jul; 32(1):73-80. PubMed ID: 15795891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Doublet electrical stimulation enhances torque production in people with spinal cord injury.
    Chang YJ; Shields RK
    Neurorehabil Neural Repair; 2011 Jun; 25(5):423-32. PubMed ID: 21304018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.