These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 9180081)

  • 1. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK.
    Posas F; Saito H
    Science; 1997 Jun; 276(5319):1702-5. PubMed ID: 9180081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor.
    Maeda T; Takekawa M; Saito H
    Science; 1995 Jul; 269(5223):554-8. PubMed ID: 7624781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae.
    O'Rourke SM; Herskowitz I
    Genes Dev; 1998 Sep; 12(18):2874-86. PubMed ID: 9744864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases.
    Wurgler-Murphy SM; Maeda T; Witten EA; Saito H
    Mol Cell Biol; 1997 Mar; 17(3):1289-97. PubMed ID: 9032256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress.
    Furukawa K; Hoshi Y; Maeda T; Nakajima T; Abe K
    Mol Microbiol; 2005 Jun; 56(5):1246-61. PubMed ID: 15882418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway.
    Tatebayashi K; Takekawa M; Saito H
    EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that the MAPK-docking site in MAPKK Dpbs2p is essential for its function.
    Sharma P; Mondal AK
    Biochem Biophys Res Commun; 2006 Jul; 346(2):562-6. PubMed ID: 16765917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator.
    Posas F; Saito H
    EMBO J; 1998 Mar; 17(5):1385-94. PubMed ID: 9482735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor.
    Posas F; Wurgler-Murphy SM; Maeda T; Witten EA; Thai TC; Saito H
    Cell; 1996 Sep; 86(6):865-75. PubMed ID: 8808622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ste11p MEKK signals through HOG, mating, calcineurin and PKC pathways to regulate the FKS2 gene.
    Wang X; Sheff MA; Simpson DM; Elion EA
    BMC Mol Biol; 2011 Nov; 12():51. PubMed ID: 22114773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway.
    Van Wuytswinkel O; Reiser V; Siderius M; Kelders MC; Ammerer G; Ruis H; Mager WH
    Mol Microbiol; 2000 Jul; 37(2):382-97. PubMed ID: 10931333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways.
    Takekawa M; Posas F; Saito H
    EMBO J; 1997 Aug; 16(16):4973-82. PubMed ID: 9305639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae.
    Panadero J; Pallotti C; Rodríguez-Vargas S; Randez-Gil F; Prieto JA
    J Biol Chem; 2006 Feb; 281(8):4638-45. PubMed ID: 16371351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that C-terminal non-kinase domain of Pbs2p has a role in high osmolarity-induced nuclear localization of Hog1p.
    Sharma P; Mondal AK
    Biochem Biophys Res Commun; 2005 Mar; 328(4):906-13. PubMed ID: 15707964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway.
    Posas F; Witten EA; Saito H
    Mol Cell Biol; 1998 Oct; 18(10):5788-96. PubMed ID: 9742096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast Skn7p activity is modulated by the Sln1p-Ypd1p osmosensor and contributes to regulation of the HOG pathway.
    Ketela T; Brown JL; Stewart RC; Bussey H
    Mol Gen Genet; 1998 Sep; 259(4):372-8. PubMed ID: 9790591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of the interaction of Ste50p with Ste11p MAPKKK in Saccharomyces cerevisiae.
    Wu C; Leberer E; Thomas DY; Whiteway M
    Mol Biol Cell; 1999 Jul; 10(7):2425-40. PubMed ID: 10397774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of Ste20p, a potential mitogen-activated protein or extracellular signal-regulated kinase kinase (MEK) kinase kinase from Saccharomyces cerevisiae.
    Wu C; Whiteway M; Thomas DY; Leberer E
    J Biol Chem; 1995 Jul; 270(27):15984-92. PubMed ID: 7608157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae.
    Buehrer BM; Errede B
    Mol Cell Biol; 1997 Nov; 17(11):6517-25. PubMed ID: 9343415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary conservation of Xenopus laevis mitogen-activated protein kinase activation and function.
    Waskiewicz AJ; Cooper JA
    Cell Growth Differ; 1993 Dec; 4(12):965-73. PubMed ID: 8117623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.