BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9181083)

  • 21. [Role of the parasitophorous vacuole of murine macrophages infected with Leishmania amazonensis in molecule acquisition].
    Cortázar TM; Hernández J; Echeverry MC; Camacho M
    Biomedica; 2006 Oct; 26 Suppl 1():26-37. PubMed ID: 17361839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VAMP3 and VAMP8 Regulate the Development and Functionality of Parasitophorous Vacuoles Housing Leishmania amazonensis.
    Séguin O; Mai LT; Acevedo Ospina H; Guay-Vincent MM; Whiteheart SW; Stäger S; Descoteaux A
    Infect Immun; 2022 Mar; 90(3):e0018321. PubMed ID: 35130453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo fusion of lysosomes with parasitophorous vacuoles of Leishmania-infected macrophages.
    Brazil RP
    Ann Trop Med Parasitol; 1984 Apr; 78(2):87-91. PubMed ID: 6742931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ultrastructure of the parasitophorous vacuole formed by Leishmania major.
    Castro R; Scott K; Jordan T; Evans B; Craig J; Peters EL; Swier K
    J Parasitol; 2006 Dec; 92(6):1162-70. PubMed ID: 17304790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical analysis of proteins and lipids found in parasitophorous vacuoles containing Leishmania amazonensis.
    Henriques C; Atella GC; Bonilha VL; de Souza W
    Parasitol Res; 2003 Jan; 89(2):123-33. PubMed ID: 12489012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redistribution of plasma-membrane surface molecules during formation of the Leishmania amazonensis-containing parasitophorous vacuole.
    Henriques C; de Souza W
    Parasitol Res; 2000 Mar; 86(3):215-25. PubMed ID: 10726992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholesterol depletion in Mycobacterium avium-infected macrophages overcomes the block in phagosome maturation and leads to the reversible sequestration of viable mycobacteria in phagolysosome-derived autophagic vacuoles.
    de Chastellier C; Thilo L
    Cell Microbiol; 2006 Feb; 8(2):242-56. PubMed ID: 16441435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Internalization of surface anionic sites and phagosome-lysosome fusion during interaction of Toxoplasma gondii with macrophages.
    de Carvalho L; de Souza W
    Eur J Cell Biol; 1990 Apr; 51(2):211-9. PubMed ID: 2351151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autophagic Induction Greatly Enhances
    Dias BRS; de Souza CS; Almeida NJ; Lima JGB; Fukutani KF; Dos Santos TBS; França-Cost J; Brodskyn CI; de Menezes JPB; Colombo MI; Veras PST
    Front Microbiol; 2018; 9():1890. PubMed ID: 30158914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Receptor-mediated entry of beta-glucuronidase into the parasitophorous vacuoles of macrophages infected with Leishmania mexicana amazonensis.
    Shepherd VL; Stahl PD; Bernd P; Rabinovitch M
    J Exp Med; 1983 May; 157(5):1471-82. PubMed ID: 6304225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cohabitation of Leishmania amazonensis and Coxiella burnetii.
    Rabinovitch M; Veras PS
    Trends Microbiol; 1996 Apr; 4(4):158-61. PubMed ID: 8728610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fusion of host cell secondary lysosomes with the parasitophorous vacuoles of Leishmania mexicana-infected macrophages.
    Alexander J; Vickerman K
    J Protozool; 1975 Nov; 22(4):502-8. PubMed ID: 172627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NAD(P)H-oxidase presence in Toxoplasma gondii tachyzoite vacuole during interaction with IFN-gamma-activated human endothelial cells.
    Cortez E; Stumbo AC; de Carvalho TM; Barbosa HS; Carvalho L
    J Parasitol; 2005 Oct; 91(5):1052-7. PubMed ID: 16419748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Phagocytosis of promastigotes and amastigotes of Leishmania mexicana by the FSDC dendritic cell line: ultrastructural study].
    Sarmiento L; Ayala M; Peña S; Rodríguez G; Fermín Z; Tapia FJ
    Biomedica; 2006 Oct; 26 Suppl 1():17-25. PubMed ID: 17361838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ATP6V0d2 controls Leishmania parasitophorous vacuole biogenesis via cholesterol homeostasis.
    Pessoa CC; Reis LC; Ramos-Sanchez EM; Orikaza CM; Cortez C; de Castro Levatti EV; Badaró ACB; Yamamoto JUDS; D'Almeida V; Goto H; Mortara RA; Real F
    PLoS Pathog; 2019 Jun; 15(6):e1007834. PubMed ID: 31199856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renitence vacuoles facilitate protection against phagolysosomal damage in activated macrophages.
    Wong AO; Marthi M; Mendel ZI; Gregorka B; Swanson MS; Swanson JA
    Mol Biol Cell; 2018 Mar; 29(5):657-668. PubMed ID: 29282279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tamoxifen is effective against Leishmania and induces a rapid alkalinization of parasitophorous vacuoles harbouring Leishmania (Leishmania) amazonensis amastigotes.
    Miguel DC; Yokoyama-Yasunaka JK; Andreoli WK; Mortara RA; Uliana SR
    J Antimicrob Chemother; 2007 Sep; 60(3):526-34. PubMed ID: 17584801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between Encephalitozoon cuniculi and macrophages. Parasitophorous vacuole growth and the absence of lysosomal fusion.
    Weidner E
    Z Parasitenkd; 1975 Aug; 47(1):1-9. PubMed ID: 1189574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do microtubules around the Toxoplasma gondii-containing parasitophorous vacuole in skeletal muscle cells form a barrier for the phagolysosomal fusion?
    Andrade EF; Stumbo AC; Monteiro-Leal LH; Carvalho L; Barbosa HS
    J Submicrosc Cytol Pathol; 2001 Jul; 33(3):337-41. PubMed ID: 11846102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Localization and activity of different lysosomal proteases in rat macrophages infected by Leishmania amazonensis].
    Prina E; Antoine JC
    Pathol Biol (Paris); 1990 Dec; 38(10):1020-2. PubMed ID: 2290691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.