BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9181483)

  • 1. Glial organization and chondroitin sulfate proteoglycan expression in the developing thalamus.
    Mitrofanis J; Earle KL; Reese BE
    J Neurocytol; 1997 Feb; 26(2):83-100. PubMed ID: 9181483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the thalamic reticular nucleus in ferrets with special reference to the perigeniculate and perireticular cell groups.
    Mitrofanis J
    Eur J Neurosci; 1994 Feb; 6(2):253-63. PubMed ID: 7513240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of radial and non-radial glia in the developing rat thalamus.
    Frassoni C; Amadeo A; Ortino B; Jaranowska A; Spreafico R
    J Comp Neurol; 2000 Dec; 428(3):527-42. PubMed ID: 11074449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the pathway from the reticular and perireticular nuclei to the thalamus in ferrets: a Dil study.
    Mitrofanis J
    Eur J Neurosci; 1994 Dec; 6(12):1864-82. PubMed ID: 7704297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of glia and blood vessels in the internal capsule of rats.
    Earle KL; Mitrofanis J
    J Neurocytol; 1998 Feb; 27(2):127-39. PubMed ID: 9609403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a projection from the perireticular thalamic nucleus to the dorsal thalamus in the adult rat and ferret.
    Mitrofanis J; Lozsádi DA; Coleman KA
    J Neurocytol; 1995 Dec; 24(12):891-902. PubMed ID: 8719817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmentally regulated expression of a brain specific species of chondroitin sulfate proteoglycan, neurocan, identified with a monoclonal antibody IG2 in the rat cerebrum.
    Oohira A; Matsui F; Watanabe E; Kushima Y; Maeda N
    Neuroscience; 1994 May; 60(1):145-57. PubMed ID: 8052408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genesis and fate of the perireticular thalamic nucleus during early development.
    Earle KL; Mitrofanis J
    J Comp Neurol; 1996 Apr; 367(2):246-63. PubMed ID: 8708008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes.
    Voigt T
    J Comp Neurol; 1989 Nov; 289(1):74-88. PubMed ID: 2808761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons.
    Mitrofanis J; Baker GE
    J Comp Neurol; 1993 Dec; 338(4):575-87. PubMed ID: 8132862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondroitin sulfate proteoglycans in the rat thalamus: expression during postnatal development and correlation with calcium-binding proteins in adults.
    Vitellaro-Zuccarello L; Meroni A; Amadeo A; De Biasi S
    Cell Tissue Res; 2001 Oct; 306(1):15-26. PubMed ID: 11683176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of glial fibrillary acidic protein and vimentin immunoreactivity during rat visual cortex development.
    Stichel CC; Müller CM; Zilles K
    J Neurocytol; 1991 Feb; 20(2):97-108. PubMed ID: 2027041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and differentiation of glial precursor cells in the rat cerebellum.
    Levine JM; Stincone F; Lee YS
    Glia; 1993 Apr; 7(4):307-21. PubMed ID: 8320001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cells of the perireticular nucleus project to the developing neocortex of the rat.
    Adams NC; Baker GE
    J Comp Neurol; 1995 Sep; 359(4):613-26. PubMed ID: 7499551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of glial development in the human foetal spinal cord during the late first and second trimester.
    Weidenheim KM; Epshteyn I; Rashbaum WK; Lyman WD
    J Neurocytol; 1994 Jun; 23(6):343-53. PubMed ID: 7522270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution patterns of vimentin-immunoreactive structures in the human prosencephalon during the second half of gestation.
    Ulfig N; Neudörfer F; Bohl J
    J Anat; 1999 Jul; 195 ( Pt 1)(Pt 1):87-100. PubMed ID: 10473296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: association with smooth protoplasmic astrocytes.
    Levine JM; Card JP
    J Neurosci; 1987 Sep; 7(9):2711-20. PubMed ID: 3305798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specialized neuronal and glial contributions to development of the hamster lateral geniculate complex and circadian visual system.
    Botchkina GI; Morin LP
    J Neurosci; 1995 Jan; 15(1 Pt 1):190-201. PubMed ID: 7823129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial fibrillary acidic protein and vimentin in radial glia of Ambystoma mexicanum and Triturus carnifex: an immunocytochemical study.
    Lazzari M; Franceschini V; Ciani F
    J Hirnforsch; 1997; 38(2):187-94. PubMed ID: 9176731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.