These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9181692)

  • 1. Estimation of the size and directional output of functional groups of interneurons underlying abdominal positioning behaviors in crayfish.
    Brewer LD; Larimer JL
    J Exp Zool; 1997 Jun; 278(3):119-32. PubMed ID: 9181692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural basis of a simple behavior: abdominal positioning in crayfish.
    Larimer JL; Moore D
    Microsc Res Tech; 2003 Feb; 60(3):346-59. PubMed ID: 12539164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abdominal positioning interneurons in crayfish: projections to and synaptic activation by higher CNS centers.
    Larimer JL; Moore D
    J Exp Zool; 1984 Apr; 230(1):1-10. PubMed ID: 6726142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic postural behavior in the crayfish, Procambarus clarkii: properties of the pattern-initiating network.
    Moore D; Larimer JL
    J Exp Zool; 1993 Nov; 267(4):404-15. PubMed ID: 8270893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected divergence among identified interneurons in different abdominal segments of the crayfish Procambarus clarkii.
    Larimer JL; Pease CM
    J Exp Zool; 1990 Jan; 253(1):20-9. PubMed ID: 2313239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bursts of information: coordinating interneurons encode multiple parameters of a periodic motor pattern.
    Mulloney B; Harness PI; Hall WM
    J Neurophysiol; 2006 Feb; 95(2):850-61. PubMed ID: 16236775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postural interneurons in the abdominal nervous system of lobster. III. Pathways mediating intersegmental spread of excitation.
    Jones KA; Page CH
    J Comp Physiol A; 1986 Feb; 158(2):281-90. PubMed ID: 3723437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interneurons involved in the control of multiple motor centers in crayfish.
    Burdohan JA; Larimer JL
    J Exp Zool; 1995 Oct; 273(3):204-15. PubMed ID: 7595284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic and non-GABAergic spiking interneurons of local and intersegmental groups in the crayfish terminal abdominal ganglion.
    Aonuma H; Nagayama T
    J Comp Neurol; 1999 Aug; 410(4):677-88. PubMed ID: 10398056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abdominal positioning interneurons in crayfish: participation in behavioral acts.
    Murphy BF; McAnelly ML; Larimer JL
    J Comp Physiol A; 1989 Aug; 165(4):461-70. PubMed ID: 2527977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology and morphology of spiking local interneurons in the terminal abdominal ganglion of the crayfish.
    Nagayama T; Isogai Y; Namba H
    J Comp Neurol; 1993 Nov; 337(4):584-99. PubMed ID: 8288772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional significance of passive and active dendritic properties in the synaptic integration by an identified nonspiking interneuron of crayfish.
    Takashima A; Hikosaka R; Takahata M
    J Neurophysiol; 2006 Dec; 96(6):3157-69. PubMed ID: 16914611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rostral ganglia are required for induction but not expression of crayfish escape reflex habituation: role of higher centers in reprogramming low-level circuits.
    Shirinyan D; Teshiba T; Taylor K; O'Neill P; Lee SC; Krasne FB
    J Neurophysiol; 2006 Apr; 95(4):2721-4. PubMed ID: 16381808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The organization of flexion-evoking interneurons in the abdominal nerve cord of the crayfish, Procambarus clarkii.
    Larimer JL; Jellies J
    J Exp Zool; 1983 Jun; 226(3):341-51. PubMed ID: 6886658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descending control of nonspiking local interneurons in the terminal abdominal ganglion of the crayfish.
    Namba H; Nagayama T; Hisada M
    J Neurophysiol; 1994 Jul; 72(1):235-47. PubMed ID: 7965008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual motor output interneurons in the abdominal ganglia of the crayfish Procambarus clarkii: synaptic activation of motor outputs in both the swimmeret and abdominal positioning systems by single interneurons.
    Murchison D; Larimer JL
    J Exp Biol; 1990 May; 150():269-93. PubMed ID: 2355211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of glutamatergic immunoreactive neurons in the terminal abdominal ganglion of the crayfish.
    Nagayama T; Kimura K; Araki M; Aonuma H; Newland PL
    J Comp Neurol; 2004 Jun; 474(1):123-35. PubMed ID: 15156582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of leg movements on the synaptic activity of descending statocyst interneurons in crayfish, Procambarus clarkii.
    Hama N; Takahata M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):877-88. PubMed ID: 14593487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Not by spikes alone: responses of coordinating neurons and the swimmeret system to local differences in excitation.
    Mulloney B; Hall WM
    J Neurophysiol; 2007 Jan; 97(1):436-50. PubMed ID: 17050832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intersegmental ascending interneurons controlling uropod movements of the crayfish Procambarus clarkii.
    Nagayama T; Isogai Y; Sato M; Hisada M
    J Comp Neurol; 1993 Jun; 332(2):155-74. PubMed ID: 8331210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.