These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9182045)

  • 21. Mechanism of neurobehavioral alteration.
    Lucchini R; Albini E; Placidi D; Alessio L
    Toxicol Lett; 2000 Mar; 112-113():35-9. PubMed ID: 10720710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomarker research in neurotoxicology: the role of mechanistic studies to bridge the gap between the laboratory and epidemiological investigations.
    Costa LG
    Environ Health Perspect; 1996 Mar; 104 Suppl 1(Suppl 1):55-67. PubMed ID: 8722110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigations of methylmercury-induced alterations in neurogenesis.
    Faustman EM; Ponce RA; Ou YC; Mendoza MA; Lewandowski T; Kavanagh T
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):859-64. PubMed ID: 12426147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Economical test methods for developmental neurobehavioral toxicity.
    Bignami G
    Environ Health Perspect; 1996 Apr; 104 Suppl 2(Suppl 2):285-98. PubMed ID: 9182035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Risk assessment of the developmental neurotoxicity of lead.
    Davis JM
    Neurotoxicology; 1990; 11(2):285-91. PubMed ID: 2234545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuropsychological approaches for the detection and evaluation of toxic symptoms.
    Fiedler N
    Environ Health Perspect; 1996 Apr; 104 Suppl 2(Suppl 2):239-45. PubMed ID: 9182032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perspectives on incorporating human neurobehavioral end points in risk assessments.
    Bellinger DC
    Risk Anal; 2002 Jun; 22(3):487-98. PubMed ID: 12088228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dose-response modeling of in vivo genotoxicity data for use in risk assessment: some approaches illustrated by an analysis of acrylamide.
    Allen B; Zeiger E; Lawrence G; Friedman M; Shipp A
    Regul Toxicol Pharmacol; 2005 Feb; 41(1):6-27. PubMed ID: 15649824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system.
    Buzanska L; Sypecka J; Nerini-Molteni S; Compagnoni A; Hogberg HT; del Torchio R; Domanska-Janik K; Zimmer J; Coecke S
    Stem Cells; 2009 Oct; 27(10):2591-601. PubMed ID: 19609937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An in vitro model for toxicological investigations of environmental neurotoxins in primary neuronal cell cultures.
    Schmuck G; Schlüter G
    Toxicol Ind Health; 1996; 12(5):683-96. PubMed ID: 8989847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of aldicarb and methamidophos neurotoxicity at different ages in the rat: behavioral and biochemical parameters.
    Moser VC
    Toxicol Appl Pharmacol; 1999 Jun; 157(2):94-106. PubMed ID: 10366542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neurobehavioral techniques to assess the effects of chemicals on the nervous system.
    Tilson HA; Mitchell CL
    Annu Rev Pharmacol Toxicol; 1984; 24():425-50. PubMed ID: 6375549
    [No Abstract]   [Full Text] [Related]  

  • 33. Developmental toxicity risk assessment: consensus building, hypothesis formulation, and focused research.
    Kimmel CA
    Drug Metab Rev; 1996; 28(1-2):85-103. PubMed ID: 8744591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dose-response analysis in risk assessment: evaluation of behavioral specificity.
    Glowa JR
    Environ Health Perspect; 1996 Apr; 104 Suppl 2(Suppl 2):391-6. PubMed ID: 9182046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A procedure for developing risk-based reference doses.
    Gaylor DW; Kodell RL
    Regul Toxicol Pharmacol; 2002 Apr; 35(2 Pt 1):137-41. PubMed ID: 12051999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lateral geniculate neurons in behaving primates. III. Response predictions of a channel model with multiple spatial-to-temporal filters.
    Gawne TJ; McClurkin JW; Richmond BJ; Optican LM
    J Neurophysiol; 1991 Sep; 66(3):809-23. PubMed ID: 1753289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity.
    Bal-Price A; Lein PJ; Keil KP; Sethi S; Shafer T; Barenys M; Fritsche E; Sachana M; Meek MEB
    Neurotoxicology; 2017 Mar; 59():240-255. PubMed ID: 27212452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative risk assessment for developmental neurotoxic effects.
    Razzaghi M; Kodell R
    Risk Anal; 2004 Dec; 24(6):1673-81. PubMed ID: 15660620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavioral methods and organic solvents: questions and consequences.
    Iregren A
    Environ Health Perspect; 1996 Apr; 104 Suppl 2(Suppl 2):361-6. PubMed ID: 9182043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Teratogen update: evaluation of the reproductive and developmental risks of caffeine.
    Christian MS; Brent RL
    Teratology; 2001 Jul; 64(1):51-78. PubMed ID: 11410911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.