These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9182047)

  • 41. Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of suckling rats.
    Rocha JB; Freitas AJ; Marques MB; Pereira ME; Emanuelli T; Souza DO
    Braz J Med Biol Res; 1993 Oct; 26(10):1077-83. PubMed ID: 8312839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of neurotoxic effects and brain region distribution in rat offspring prenatally co-exposed to low doses of BDE-99 and methylmercury.
    Zhao W; Cheng J; Gu J; Liu Y; Fujimura M; Wang W
    Chemosphere; 2014 Oct; 112():170-6. PubMed ID: 25048903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neurotoxicity of lead, methylmercury, and PCBs in relation to the Great Lakes.
    Rice DC
    Environ Health Perspect; 1995 Dec; 103 Suppl 9(Suppl 9):71-87. PubMed ID: 8635443
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A review of the studies of the cardiovascular health effects of methylmercury with consideration of their suitability for risk assessment.
    Stern AH
    Environ Res; 2005 May; 98(1):133-42. PubMed ID: 15721894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neurobehavioral effects of postnatal exposure to low-level mercury vapor and/or methylmercury in mice.
    Yoshida M; Lee JY; Satoh M; Watanabe C
    J Toxicol Sci; 2018; 43(1):11-17. PubMed ID: 29415947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neurotoxic states and their investigation--possibility for early detection of poisoning.
    Dési I
    Folia Histochem Cytobiol; 2001; 39 Suppl 2():46-7. PubMed ID: 11820623
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The IPCS collaborative study on neurobehavioral screening methods.
    Moser VC; Becking GC; MacPhail RC; Kulig BM
    Fundam Appl Toxicol; 1997 Feb; 35(2):143-51. PubMed ID: 9038235
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expansion of methylmercury poisoning outside of Minamata: an epidemiological study on chronic methylmercury poisoning outside of Minamata.
    Ninomiya T; Ohmori H; Hashimoto K; Tsuruta K; Ekino S
    Environ Res; 1995 Jul; 70(1):47-50. PubMed ID: 8603658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Appraisal of neurobehavioral methods in environmental health research: the developing brain as a target for neurotoxic chemicals.
    Winneke G
    Int J Hyg Environ Health; 2007 Oct; 210(5):601-9. PubMed ID: 17869181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Environmental factors associated with a spectrum of neurodevelopmental deficits.
    Mendola P; Selevan SG; Gutter S; Rice D
    Ment Retard Dev Disabil Res Rev; 2002; 8(3):188-97. PubMed ID: 12216063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acute exposure to methylmercury at two developmental windows: focus on neurobehavioral and neurochemical effects in rat offspring.
    Carratù MR; Borracci P; Coluccia A; Giustino A; Renna G; Tomasini MC; Raisi E; Antonelli T; Cuomo V; Mazzoni E; Ferraro L
    Neuroscience; 2006 Sep; 141(3):1619-29. PubMed ID: 16781816
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protective effects of dietary fibre against manganese-induced neurobehavioral aberrations in rats.
    Shi XQ; Yan W; Wang KY; Fan QY; Zou Y
    Arh Hig Rada Toksikol; 2012 Sep; 63(3):263-70. PubMed ID: 23152376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neurobehavioral effects of developmental methylmercury exposure.
    Gilbert SG; Grant-Webster KS
    Environ Health Perspect; 1995 Sep; 103 Suppl 6(Suppl 6):135-42. PubMed ID: 8549462
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Manganese neurotoxicity, a continuum of dysfunction: results from a community based study.
    Mergler D; Baldwin M; Bélanger S; Larribe F; Beuter A; Bowler R; Panisset M; Edwards R; de Geoffroy A; Sassine MP; Hudnell K
    Neurotoxicology; 1999; 20(2-3):327-42. PubMed ID: 10385894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of perinatal coexposure to methylmercury and polychlorinated biphenyls on neurobehavioral development in mice.
    Sugawara N; Ohba T; Nakai K; Kakita A; Nakamura T; Suzuki K; Kameo S; Shimada M; Kurokawa N; Satoh C; Satoh H
    Arch Toxicol; 2008 Jun; 82(6):387-97. PubMed ID: 17992516
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integration of epidemiology and animal neurotoxicity data for risk assessment.
    Li AA; Levine TE; Burns CJ; Anger WK
    Neurotoxicology; 2012 Aug; 33(4):823-32. PubMed ID: 22327016
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The US EPA reference dose for methylmercury: sources of uncertainty.
    Rice DC
    Environ Res; 2004 Jul; 95(3):406-13. PubMed ID: 15220074
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methylmercury effects on ion channels and electrical activity in neurons: future directions.
    Shafer TJ
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):855-64. PubMed ID: 10875446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dose-response relationship for human fetal exposure to methylmercury.
    Marsh DO; Myers GJ; Clarkson TW; Amin-Zaki L; Tikriti S; Majeed MA; Dabbagh AR
    Clin Toxicol; 1981 Nov; 18(11):1311-8. PubMed ID: 7341057
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biologically based dose-response models for developmental toxicants: lessons from methylmercury.
    Faustman EM; Lewandowski TA; Ponce RA; Bartell SM
    Inhal Toxicol; 1999; 11(6-7):559-72. PubMed ID: 11202998
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.