These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9182516)

  • 1. What is the time scale of magnetic field interaction in biological systems?
    Engström S
    Bioelectromagnetics; 1997; 18(3):244-9. PubMed ID: 9182516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current oscillation and chaotic dynamics in superlattices driven by crossed electric and magnetic fields.
    Wang C; Cao JC
    Chaos; 2005 Mar; 15(1):13111. PubMed ID: 15836265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of combined DC and AC magnetic fields on germination of hornwort seeds.
    Kobayashi M; Soda N; Miyo T; Ueda Y
    Bioelectromagnetics; 2004 Oct; 25(7):552-9. PubMed ID: 15376241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant ac-dc magnetic fields: calculated response.
    Durney CH; Rushforth CK; Anderson AA
    Bioelectromagnetics; 1988; 9(4):315-36. PubMed ID: 3190760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scheme for incorporating DC magnetic fields into epidemiological studies of EMF exposure.
    Blackman CF; Most B
    Bioelectromagnetics; 1993; 14(5):413-31. PubMed ID: 8285915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothesis: the risk of childhood leukemia is related to combinations of power-frequency and static magnetic fields.
    Bowman JD; Thomas DC; London SJ; Peters JM
    Bioelectromagnetics; 1995; 16(1):48-59. PubMed ID: 7748203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems.
    Blanchard JP; Blackman CF
    Bioelectromagnetics; 1994; 15(3):217-38. PubMed ID: 8074738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on "Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields".
    Gill JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):023901; author reply 023902. PubMed ID: 14525031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina.
    Jenrow KA; Smith CH; Liboff AR
    Bioelectromagnetics; 1996; 17(6):467-74. PubMed ID: 8986364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible mechanisms by which extremely low frequency magnetic fields affect opioid function.
    Prato FS; Carson JJ; Ossenkopp KP; Kavaliers M
    FASEB J; 1995 Jun; 9(9):807-14. PubMed ID: 7601344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic properties of Lednev's parametric resonance mechanism.
    Engström S
    Bioelectromagnetics; 1996; 17(1):58-70. PubMed ID: 8742757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible health hazards from exposure to power-frequency electric and magnetic fields--a COMAR Technical Information Statement.
    IEEE Eng Med Biol Mag; 2000; 19(1):131-7. PubMed ID: 10659440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of whole-animal data using the ion parametric resonance model.
    Blanchard JP; House DE; Blackman CF
    Bioelectromagnetics; 1995; 16(4):211-5. PubMed ID: 7488253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of russian literature on biological action of DC and low-frequency AC magnetic fields.
    Zhadin MN
    Bioelectromagnetics; 2001 Jan; 22(1):27-45. PubMed ID: 11122491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a slow time-scale of interaction for magnetic fields inhibiting tamoxifen's antiproliferative action in human breast cancer cells.
    Harland J; Engström S; Liburdy R
    Cell Biochem Biophys; 1999; 31(3):295-306. PubMed ID: 10736752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-dependent and -independent behavioral effects of extremely low frequency magnetic fields in a land snail are consistent with a parametric resonance mechanism.
    Prato FS; Kavaliers M; Cullen AP; Thomas AW
    Bioelectromagnetics; 1997; 18(3):284-91. PubMed ID: 9096848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina.
    Jenrow KA; Smith CH; Liboff AR
    Bioelectromagnetics; 1995; 16(2):106-12. PubMed ID: 7612025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporally incoherent magnetic fields mitigate the response of biological systems to temporally coherent magnetic fields.
    Litovitz TA; Krause D; Montrose CJ; Mullins JM
    Bioelectromagnetics; 1994; 15(5):399-409. PubMed ID: 7802708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of combined AC-DC magnetic fields on free radicals in organized and biological systems. Development of a model and application of the radical pair mechanism to radicals in micelles.
    Scaiano JC; Cozens FL; Mohtat N
    Photochem Photobiol; 1995 Nov; 62(5):818-29. PubMed ID: 8570719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of very weak magnetic fields on radical pair reformation.
    Adair RK
    Bioelectromagnetics; 1999; 20(4):255-63. PubMed ID: 10230939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.