BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 9183360)

  • 1. Role of potassium channels in relaxations of canine middle cerebral arteries induced by nitric oxide donors.
    Onoue H; Katusic ZS
    Stroke; 1997 Jun; 28(6):1264-70; discussion 1270-1. PubMed ID: 9183360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis.
    Kinoshita H; Katusic ZS
    Stroke; 1997 Feb; 28(2):433-7; discussion 437-8. PubMed ID: 9040702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subarachnoid hemorrhage and the role of potassium channels in relaxations of canine basilar artery to nitrovasodilators.
    Onoue H; Katusic ZS
    J Cereb Blood Flow Metab; 1998 Feb; 18(2):186-95. PubMed ID: 9469162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of K+ channels in augmented relaxations to sodium nitroprusside induced by mexiletine in rat aortas.
    Kinoshita H; Ishikawa T; Hatano Y
    Anesthesiology; 2000 Mar; 92(3):813-20. PubMed ID: 10719960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide.
    Onoue H; Katusic ZS
    Brain Res; 1998 Feb; 785(1):107-13. PubMed ID: 9526059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of cerebral arterial relaxations to hydrogen peroxide.
    Iida Y; Katusic ZS
    Stroke; 2000 Sep; 31(9):2224-30. PubMed ID: 10978056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of nitric oxide in the non-adrenergic non-cholinergic neurotransmission of horse deep penile arteries: role of charybdotoxin-sensitive K(+)-channels.
    Simonsen U; Prieto D; Sánez de Tejada I; García-Sacristán A
    Br J Pharmacol; 1995 Nov; 116(6):2582-90. PubMed ID: 8590974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-derived nitric oxide inhibits the relaxation of the porcine coronary artery to natriuretic peptides by desensitizing big conductance calcium-activated potassium channels of vascular smooth muscle.
    Liang CF; Au AL; Leung SW; Ng KF; Félétou M; Kwan YW; Man RY; Vanhoutte PM
    J Pharmacol Exp Ther; 2010 Jul; 334(1):223-31. PubMed ID: 20332186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that potassium channels make a major contribution to SIN-1-evoked relaxation of rat isolated mesenteric artery.
    Plane F; Hurrell A; Jeremy JY; Garland CJ
    Br J Pharmacol; 1996 Dec; 119(8):1557-62. PubMed ID: 8982501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of subarachnoid hemorrhage on mechanisms of vasodilation mediated by cyclic adenosine monophosphate.
    Onoue H; Katusic ZS
    J Neurosurg; 1998 Jul; 89(1):111-7. PubMed ID: 9647181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of soluble guanylate cyclase and potassium channels contribute to relaxations to nitric oxide in smooth muscle derived from canine femoral veins.
    Bracamonte MP; Burnett JC; Miller VM
    J Cardiovasc Pharmacol; 1999 Sep; 34(3):407-13. PubMed ID: 10471000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic GMP regulates cromakalim-induced relaxation in the rat aortic smooth muscle: role of cyclic GMP in K(ATP)-channels.
    Wu CC; Chen SJ; Yen MH
    Life Sci; 1999; 64(26):2471-8. PubMed ID: 10403506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of relaxations of bovine isolated bronchioles by the nitric oxide donor, GEA 3175.
    Hernández M; Elmedal B; Mulvany MJ; Simonsen U
    Br J Pharmacol; 1998 Mar; 123(5):895-905. PubMed ID: 9535018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation to authentic nitric oxide and SIN-1 in rat isolated mesenteric arteries: variable role for smooth muscle hyperpolarization.
    Plane F; Sampson LJ; Smith JJ; Garland CJ
    Br J Pharmacol; 2001 Jul; 133(5):665-72. PubMed ID: 11429390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of intracellular Ca2+ stores in inhibitory effects of NO donor SIN-1 and cGMP.
    Franck H; Storr M; Puschmann A; Schusdziarra V; Allescher HD
    Am J Physiol; 1998 Jul; 275(1):G159-68. PubMed ID: 9655696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO.
    Najibi S; Cohen RA
    Am J Physiol; 1995 Sep; 269(3 Pt 2):H805-11. PubMed ID: 7573521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NO(+) but not NO radical relaxes airway smooth muscle via cGMP-independent release of internal Ca(2+).
    Janssen LJ; Premji M; Lu-Chao H; Cox G; Keshavjee S
    Am J Physiol Lung Cell Mol Physiol; 2000 May; 278(5):L899-905. PubMed ID: 10781419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K(ATP) channels do not mediate vasodilation by 3-morpholinosydnonimine in goat coronary artery.
    Deka DK; Raviprakash V; Mishra SK
    Eur J Pharmacol; 1997 Jul; 330(2-3):157-64. PubMed ID: 9253949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.