These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Normal human lymphocytes exhibit a wide range of methionine-dependency which is related to altered cell division but not micronucleus frequency. Crott J; Thomas P; Fenech M Mutagenesis; 2001 Jul; 16(4):317-22. PubMed ID: 11420399 [TBL] [Abstract][Full Text] [Related]
8. Growth support and toxicity of homocysteine and its effects on methionine metabolism in non-transformed and chemically transformed C3H/10T1/2 cells. Djurhuus R; Svardal AM; Ueland PM; Male R; Lillehaug JR Carcinogenesis; 1988 Jan; 9(1):9-16. PubMed ID: 3335051 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms of cell cycle block by methionine restriction in human prostate cancer cells. Lu S; Epner DE Nutr Cancer; 2000; 38(1):123-30. PubMed ID: 11341037 [TBL] [Abstract][Full Text] [Related]
10. Response of the methionine synthase system to short-term culture with homocysteine and nitrous oxide and its relation to methionine dependence. Fiskerstrand T; Ueland PM; Refsum H Int J Cancer; 1997 Jul; 72(2):301-6. PubMed ID: 9219837 [TBL] [Abstract][Full Text] [Related]
11. Modulation of glutathione content and the effect on methionine auxotrophy and cellular distribution of homocysteine and cysteine in mouse cell lines. Djurhuus R; Svardal AM; Mansoor MA; Ueland PM Carcinogenesis; 1991 Feb; 12(2):241-7. PubMed ID: 1995190 [TBL] [Abstract][Full Text] [Related]
12. Regulation of O6-methylguanine-DNA methyltransferase by methionine in human tumour cells. Kokkinakis DM; von Wronski MA; Vuong TH; Brent TP; Schold SC Br J Cancer; 1997; 75(6):779-88. PubMed ID: 9062396 [TBL] [Abstract][Full Text] [Related]
13. Homocysteine increases methionine synthase mRNA level in Caco-2 cells. Ortiou S; Alberto JM; Guéant JL; Merten M Cell Physiol Biochem; 2004; 14(4-6):407-14. PubMed ID: 15319544 [TBL] [Abstract][Full Text] [Related]
14. Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture. Guo HY; Herrera H; Groce A; Hoffman RM Cancer Res; 1993 Jun; 53(11):2479-83. PubMed ID: 8495409 [TBL] [Abstract][Full Text] [Related]
15. Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Coalson DW; Mecham JO; Stern PH; Hoffman RM Proc Natl Acad Sci U S A; 1982 Jul; 79(14):4248-51. PubMed ID: 6289297 [TBL] [Abstract][Full Text] [Related]
16. Methionine metabolism in BHK cells: selection and characterization of ethionine resistant clones. Caboche M J Cell Physiol; 1976 Mar; 87(3):321-35. PubMed ID: 1254654 [TBL] [Abstract][Full Text] [Related]
17. Methionine-dependence and combination chemotherapy on human gastric cancer cells in vitro. Cao WX; Ou JM; Fei XF; Zhu ZG; Yin HR; Yan M; Lin YZ World J Gastroenterol; 2002 Apr; 8(2):230-2. PubMed ID: 11925597 [TBL] [Abstract][Full Text] [Related]
18. Development and reversion of methionine dependence in a human glioma cell line: relation to homocysteine remethylation and cobalamin status. Fiskerstrand T; Christensen B; Tysnes OB; Ueland PM; Refsum H Cancer Res; 1994 Sep; 54(18):4899-906. PubMed ID: 8069855 [TBL] [Abstract][Full Text] [Related]
19. Type II [3H]estradiol binding site antagonists: inhibition of normal and malignant prostate cell growth and proliferation. Markaverich BM; Alejandro MA Int J Oncol; 1998 May; 12(5):1127-35. PubMed ID: 9538139 [TBL] [Abstract][Full Text] [Related]
20. Analysis of cell-cycle kinetics and sulfur amino acid metabolism in methionine-dependent tumor cell lines; the effect of homocysteine supplementation. Pavillard V; Drbal AA; Swaine DJ; Phillips RM; Double JA; Nicolaou A Biochem Pharmacol; 2004 Apr; 67(8):1587-99. PubMed ID: 15041476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]