These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9184211)

  • 1. Factors responsible for target site selection in Tn10 transposition: a role for the DDE motif in target DNA capture.
    Junop MS; Haniford DB
    EMBO J; 1997 May; 16(10):2646-55. PubMed ID: 9184211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate recognition and induced DNA deformation by transposase at the target-capture stage of Tn10 transposition.
    Pribil PA; Haniford DB
    J Mol Biol; 2000 Oct; 303(2):145-59. PubMed ID: 11023782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple roles for divalent metal ions in DNA transposition: distinct stages of Tn10 transposition have different Mg2+ requirements.
    Junop MS; Haniford DB
    EMBO J; 1996 May; 15(10):2547-55. PubMed ID: 8665862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All three residues of the Tn 10 transposase DDE catalytic triad function in divalent metal ion binding.
    Allingham JS; Pribil PA; Haniford DB
    J Mol Biol; 1999 Jun; 289(5):1195-206. PubMed ID: 10373361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement and rescue of target capture in Tn10 transposition by site-specific modifications in target DNA.
    Pribil PA; Wardle SJ; Haniford DB
    Mol Microbiol; 2004 May; 52(4):1173-86. PubMed ID: 15130133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of IS10 transposase separation of function mutants: identification of amino acid residues in transposase that are important for active site function and the stability of transposition intermediates.
    Kennedy AK; Haniford DB
    J Mol Biol; 1996 Mar; 256(3):533-47. PubMed ID: 8604136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of a strong promoter following IS911 circularization and the role of circles in transposition.
    Ton-Hoang B; Bétermier M; Polard P; Chandler M
    EMBO J; 1997 Jun; 16(11):3357-71. PubMed ID: 9214651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tn10 transposase mutants with altered transpososome unfolding properties are defective in hairpin formation.
    Humayun S; Wardle SJ; Shilton BH; Pribil PA; Liburd J; Haniford DB
    J Mol Biol; 2005 Feb; 346(3):703-16. PubMed ID: 15713457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transposition of hAT elements links transposable elements and V(D)J recombination.
    Zhou L; Mitra R; Atkinson PW; Hickman AB; Dyda F; Craig NL
    Nature; 2004 Dec; 432(7020):995-1001. PubMed ID: 15616554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-site preferences of Sleeping Beauty transposons.
    Liu G; Geurts AM; Yae K; Srinivasan AR; Fahrenkrug SC; Largaespada DA; Takeda J; Horie K; Olson WK; Hackett PB
    J Mol Biol; 2005 Feb; 346(1):161-73. PubMed ID: 15663935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of metal ion action in Tn10 transposition.
    Allingham JS; Haniford DB
    J Mol Biol; 2002 May; 319(1):53-65. PubMed ID: 12051936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific recombination by the DDE family member mobile element IS30 transposase.
    Kiss J; Szabó M; Olasz F
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15000-5. PubMed ID: 14665688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transposon Tn10: genetic organization, regulation, and insertion specificity.
    Kleckner N; Way J; Davis M; Simons R; Halling S
    Fed Proc; 1982 Aug; 41(10):2649-52. PubMed ID: 6286364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tn5 transposase loops DNA in the absence of Tn5 transposon end sequences.
    Adams CD; Schnurr B; Skoko D; Marko JF; Reznikoff WS
    Mol Microbiol; 2006 Dec; 62(6):1558-68. PubMed ID: 17074070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends.
    Miskey C; Papp B; Mátés L; Sinzelle L; Keller H; Izsvák Z; Ivics Z
    Mol Cell Biol; 2007 Jun; 27(12):4589-600. PubMed ID: 17403897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target DNA bending is an important specificity determinant in target site selection in Tn10 transposition.
    Pribil PA; Haniford DB
    J Mol Biol; 2003 Jul; 330(2):247-59. PubMed ID: 12823965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure/function insights into Tn5 transposition.
    Steiniger-White M; Rayment I; Reznikoff WS
    Curr Opin Struct Biol; 2004 Feb; 14(1):50-7. PubMed ID: 15102449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant Mos1 mariner transposons are hyperactive in Aedes aegypti.
    Pledger DW; Coates CJ
    Insect Biochem Mol Biol; 2005 Oct; 35(10):1199-207. PubMed ID: 16102425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal domain-deleted mu transposase exhibits increased transposition activity with low target site preference in modified buffers.
    Kim YC; Morrison SL
    J Mol Microbiol Biotechnol; 2009; 17(1):30-40. PubMed ID: 19033677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete sequence determination combined with analysis of transposition/site-specific recombination events to explain genetic organization of IncP-7 TOL plasmid pWW53 and related mobile genetic elements.
    Yano H; Garruto CE; Sota M; Ohtsubo Y; Nagata Y; Zylstra GJ; Williams PA; Tsuda M
    J Mol Biol; 2007 May; 369(1):11-26. PubMed ID: 17408691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.