BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9184328)

  • 1. Prorhombomeric subdivision of the mammalian embryonic hindbrain: is it functionally meaningful?
    Ruberte E; Wood HB; Morriss-Kay GM
    Int J Dev Biol; 1997 Apr; 41(2):213-22. PubMed ID: 9184328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin A deficiency results in the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo.
    White JC; Highland M; Kaiser M; Clagett-Dame M
    Dev Biol; 2000 Apr; 220(2):263-84. PubMed ID: 10753515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of neural crest formation in the midbrain/rostral hindbrain and preotic hindbrain regions of the mouse embryo.
    Nichols DH
    Am J Anat; 1987 Jun; 179(2):143-54. PubMed ID: 3618526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos.
    Morriss-Kay GM; Murphy P; Hill RE; Davidson DR
    EMBO J; 1991 Oct; 10(10):2985-95. PubMed ID: 1915273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos.
    Osumi-Yamashita N; Ninomiya Y; Doi H; Eto K
    Dev Biol; 1994 Aug; 164(2):409-19. PubMed ID: 8045344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurulation in the mouse. I. The ontogenesis of neural segments and the determination of topographical regions in a central nervous system.
    Sakai Y
    Anat Rec; 1987 Aug; 218(4):450-7. PubMed ID: 3662046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse.
    Dupé V; Ghyselinck NB; Wendling O; Chambon P; Mark M
    Development; 1999 Nov; 126(22):5051-9. PubMed ID: 10529422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of segmental patterning in the vertebrate hindbrain.
    Wilkinson DG
    Perspect Dev Neurobiol; 1993; 1(3):117-25. PubMed ID: 7916256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between hindbrain segmentation, neural crest cell migration and branchial arch abnormalities in rat embryos exposed to fluconazole and retinoic acid in vitro.
    Menegola E; Broccia ML; Di Renzo F; Massa V; Giavini E
    Reprod Toxicol; 2004; 18(1):121-30. PubMed ID: 15013071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of embryonic neuroepithelial cell lines exhibiting an epiplastic expression pattern of region specific markers.
    Nardelli J; Catala M; Charnay P
    J Neurosci Res; 2003 Sep; 73(6):737-52. PubMed ID: 12949900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to retinoic acid before or after the onset of somitogenesis reveals separate effects on rhombomeric segmentation and 3' HoxB gene expression domains.
    Wood H; Pall G; Morriss-Kay G
    Development; 1994 Aug; 120(8):2279-85. PubMed ID: 7925028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of early-emigrating midbrain crest cells to the dental mesenchyme of mandibular molar teeth in rat embryos.
    Imai H; Osumi-Yamashita N; Ninomiya Y; Eto K
    Dev Biol; 1996 Jun; 176(2):151-65. PubMed ID: 8660858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse.
    Wilkinson DG; Bhatt S; Chavrier P; Bravo R; Charnay P
    Nature; 1989 Feb; 337(6206):461-4. PubMed ID: 2915691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal neurulation in mammals.
    Morriss-Kay G; Wood H; Chen WH
    Ciba Found Symp; 1994; 181():51-63; discussion 63-9. PubMed ID: 8005030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restricting Bmp-4 mediated apoptosis in hindbrain neural crest.
    Smith A; Graham A
    Dev Dyn; 2001 Mar; 220(3):276-83. PubMed ID: 11241835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positional regulation of Krox-20 and mafB/kr expression in the developing hindbrain: potentialities of prospective rhombomeres.
    Marín F; Charnay P
    Dev Biol; 2000 Feb; 218(2):220-34. PubMed ID: 10656765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early events in mammalian craniofacial morphogenesis.
    Morriss-Kay G; Tucket F
    J Craniofac Genet Dev Biol; 1991; 11(4):181-91. PubMed ID: 1812124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of hyperthermia effects on CNS development: rostral gene expression domains remain, despite severe head truncation; and the hindbrain/otocyst relationship is altered.
    Buckiová D; Brown NA
    Teratology; 1999 Mar; 59(3):139-47. PubMed ID: 10194804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 13-cis-Retinoic acid alters neural crest cells expressing Krox-20 and Pax-2 in macaque embryos.
    Makori N; Peterson PE; Wei X; Hummler H; Hendrickx AG
    Anat Rec; 1999 Jun; 255(2):142-54. PubMed ID: 10359515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function.
    Barrallo-Gimeno A; Holzschuh J; Driever W; Knapik EW
    Development; 2004 Apr; 131(7):1463-77. PubMed ID: 14985255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.