These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 9184903)
61. An Innovative Ergometer to Measure Neuromuscular Fatigue Immediately after Cycling. Doyle-Baker D; Temesi J; Medysky ME; Holash RJ; Millet GY Med Sci Sports Exerc; 2018 Feb; 50(2):375-387. PubMed ID: 28930862 [TBL] [Abstract][Full Text] [Related]
62. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability. Pitcher JB; Robertson AL; Clover EC; Jaberzadeh S Exp Brain Res; 2005 Jan; 160(4):409-17. PubMed ID: 15502993 [TBL] [Abstract][Full Text] [Related]
63. Slower but not faster unilateral fatiguing knee extensions alter contralateral limb performance without impairment of maximal torque output. Prieske O; Aboodarda SJ; Benitez Sierra JA; Behm DG; Granacher U Eur J Appl Physiol; 2017 Feb; 117(2):323-334. PubMed ID: 28078451 [TBL] [Abstract][Full Text] [Related]
64. Fatigue and recovery of phosphorus metabolites and pH during stimulation of rat skeletal muscle: an evoked electromyography and in vivo 31P-nuclear magnetic resonance spectroscopy study. Mizuno T; Takanashi Y; Yoshizaki K; Kondo M Eur J Appl Physiol Occup Physiol; 1994; 69(2):102-9. PubMed ID: 7805663 [TBL] [Abstract][Full Text] [Related]
65. A model of fatigue and recovery in paraplegic's quadriceps muscle subjected to intermittent FES. Giat Y; Mizrahi J; Levy M J Biomech Eng; 1996 Aug; 118(3):357-66. PubMed ID: 8872258 [TBL] [Abstract][Full Text] [Related]
66. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Bigland-Ritchie B; Johansson R; Lippold OC; Woods JJ J Neurophysiol; 1983 Jul; 50(1):313-24. PubMed ID: 6308182 [TBL] [Abstract][Full Text] [Related]
67. Influence of fatigue on EMG/force ratio and cocontraction in cycling. Hautier CA; Arsac LM; Deghdegh K; Souquet J; Belli A; Lacour JR Med Sci Sports Exerc; 2000 Apr; 32(4):839-43. PubMed ID: 10776904 [TBL] [Abstract][Full Text] [Related]
68. Effects of supramaximal exercise on the electromyographic signal. Hunter AM; St Clair Gibson A; Lambert MI; Nobbs L; Noakes TD Br J Sports Med; 2003 Aug; 37(4):296-9. PubMed ID: 12893711 [TBL] [Abstract][Full Text] [Related]
69. Fatigue in mammalian skeletal muscle stimulated under computer control. Wise AK; Morgan DL; Gregory JE; Proske U J Appl Physiol (1985); 2001 Jan; 90(1):189-97. PubMed ID: 11133910 [TBL] [Abstract][Full Text] [Related]
70. A critical review of EMG-controlled electrical stimulation in paraplegics. Graupe D; Kohn KH Crit Rev Biomed Eng; 1987; 15(3):187-210. PubMed ID: 3329594 [TBL] [Abstract][Full Text] [Related]
71. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Todd G; Petersen NT; Taylor JL; Gandevia SC Exp Brain Res; 2003 Jun; 150(3):308-13. PubMed ID: 12677313 [TBL] [Abstract][Full Text] [Related]
72. [Detection of muscle fatigue with electromyography]. Luttmann A Wien Med Wochenschr; 1996; 146(13-14):374-6. PubMed ID: 9012190 [TBL] [Abstract][Full Text] [Related]
73. Electromyographic and contractile properties of rabbit masseter motor units during fatiguing stimulation. Kwa SH; Weijs WA; Van Eijden TM Exp Brain Res; 2003 Mar; 149(1):96-106. PubMed ID: 12592507 [TBL] [Abstract][Full Text] [Related]
74. Effects of fatigue on corticospinal excitability of the human knee extensors. Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591 [TBL] [Abstract][Full Text] [Related]
76. A new method for muscle fatigue assessment: Online model identification techniques. Papaiordanidou M; Hayashibe M; Varray A; Fattal C; Guiraud D Muscle Nerve; 2014 Oct; 50(4):556-63. PubMed ID: 24477627 [TBL] [Abstract][Full Text] [Related]
77. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes. Lepers R; Theurel J; Hausswirth C; Bernard T J Sci Med Sport; 2008 Jul; 11(4):381-9. PubMed ID: 17499023 [TBL] [Abstract][Full Text] [Related]
78. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue. Graham GM; Thrasher TA; Popovic MR IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):38-45. PubMed ID: 16562630 [TBL] [Abstract][Full Text] [Related]
79. Electrical stimulation of human tibialis anterior: (A) contractile properties are stable over a range of submaximal voltages; (B) high- and low-frequency fatigue are inducible and reliably assessable at submaximal voltages. Hanchard NC; Williamson M; Caley RW; Cooper RG Clin Rehabil; 1998 Oct; 12(5):413-27. PubMed ID: 9796932 [TBL] [Abstract][Full Text] [Related]
80. Quadriceps femoris electromyogram during concentric, isometric and eccentric phases of fatiguing dynamic knee extensions. Pincivero DM; Gandhi V; Timmons MK; Coelho AJ J Biomech; 2006; 39(2):246-54. PubMed ID: 16321626 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]