BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9185009)

  • 1. Uptake and decay of volatile organic compounds at environmental concentrations: application of a four-compartment model to a chamber study of five human subjects.
    Wallace LA; Nelson WC; Pellizzari ED; Raymer JH
    J Expo Anal Environ Epidemiol; 1997; 7(2):141-63. PubMed ID: 9185009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A linear model relating breath concentrations to environmental exposures: application to a chamber study of four volunteers exposed to volatile organic chemicals.
    Wallace L; Pellizzari E; Gordon S
    J Expo Anal Environ Epidemiol; 1993; 3(1):75-102. PubMed ID: 8518547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination kinetics of volatile organics in humans using breath measurements.
    Pellizzari ED; Wallace LA; Gordon SM
    J Expo Anal Environ Epidemiol; 1992; 2(3):341-55. PubMed ID: 1422163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of volatile organic compounds in breath after exposure to occupational and environmental microenvironments.
    Raymer JH; Pellizzari ED; Thomas KW; Cooper SD
    J Expo Anal Environ Epidemiol; 1991 Oct; 1(4):439-51. PubMed ID: 1824328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanistic algorithm for predicting blood:air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin.
    Poulin P; Krishnan K
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):131-7. PubMed ID: 8560466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a physiologically based model to predict systemic uptake and respiratory elimination of perchloroethylene.
    Dallas CE; Muralidhara S; Chen XM; Ramanathan R; Varkonyi P; Gallo JM; Bruckner JV
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):60-8. PubMed ID: 8079355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air.
    Delfino RJ; Gong H; Linn WS; Hu Y; Pellizzari ED
    J Expo Anal Environ Epidemiol; 2003 Sep; 13(5):348-63. PubMed ID: 12973363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses.
    Weisel CP; Zhang J; Turpin BJ; Morandi MT; Colome S; Stock TH; Spektor DM; Korn L; Winer AM; Kwon J; Meng QY; Zhang L; Harrington R; Liu W; Reff A; Lee JH; Alimokhtari S; Mohan K; Shendell D; Jones J; Farrar L; Maberti S; Fan T
    Res Rep Health Eff Inst; 2005 Nov; (130 Pt 1):1-107; discussion 109-27. PubMed ID: 16454009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxic volatile organic compounds in simulated environmental tobacco smoke: emission factors for exposure assessment.
    Daisey JM; Mahanama KR; Hodgson AT
    J Expo Anal Environ Epidemiol; 1998; 8(3):313-34. PubMed ID: 9679214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of kinetics in acute lethality of nonreactive volatile organic compounds (VOCs).
    DeJongh J; Verhaar HJ; Hermens JL
    Toxicol Sci; 1998 Sep; 45(1):26-32. PubMed ID: 9848107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between levels of volatile organic compounds in air and blood from the general population.
    Lin YS; Egeghy PP; Rappaport SM
    J Expo Sci Environ Epidemiol; 2008 Jul; 18(4):421-9. PubMed ID: 18059425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing week-long exposures to volatile organic compounds using physiologically based pharmacokinetic models.
    Roy A; Georgopoulos PG
    J Expo Anal Environ Epidemiol; 1998; 8(3):407-22. PubMed ID: 9679220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of breath analysis for exposure estimates of benzene associated with active smoking.
    Jo WK; Pack KW
    Environ Res; 2000 Jun; 83(2):180-7. PubMed ID: 10856191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability of environmental exposures to volatile organic compounds.
    Rappaport SM; Kupper LL
    J Expo Anal Environ Epidemiol; 2004 Jan; 14(1):92-107. PubMed ID: 14726948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ analysis of solvents on breath and blood: a selected ion flow tube mass spectrometric study.
    Wilson PF; Freeman CG; McEwan MJ; Milligan DB; Allardyce RA; Shaw GM
    Rapid Commun Mass Spectrom; 2002; 16(5):427-32. PubMed ID: 11857727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tissue composition-based algorithm for predicting tissue:air partition coefficients of organic chemicals.
    Poulin P; Krishnan K
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):126-30. PubMed ID: 8560465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation potential of air contaminants: combining biological allometry, chemical equilibrium and mass-balances to predict accumulation of air pollutants in various mammals.
    Veltman K; McKone TE; Huijbregts MA; Hendriks AJ
    Toxicol Appl Pharmacol; 2009 Jul; 238(1):47-55. PubMed ID: 19389415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental and biological monitoring of volatile organic compounds in the workplace.
    Caro J; Gallego M
    Chemosphere; 2009 Oct; 77(3):426-33. PubMed ID: 19635627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of environmental conditions on the sorption of volatile organic compounds onto tire powder.
    Oh DI; Nam K; Park JW; Khim JH; Kim YK; Kim JY
    J Hazard Mater; 2008 May; 153(1-2):157-63. PubMed ID: 17889437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personal, indoor, and outdoor VOC exposures in a probability sample of children.
    Adgate JL; Eberly LE; Stroebel C; Pellizzari ED; Sexton K
    J Expo Anal Environ Epidemiol; 2004; 14 Suppl 1():S4-S13. PubMed ID: 15118740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.