These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 9185148)

  • 1. The pneumococcal cell wall degrading enzymes: a modular design to create new lysins?
    López R; García E; García P; García JL
    Microb Drug Resist; 1997; 3(2):199-211. PubMed ID: 9185148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lytic enzyme of the pneumococcal phage Dp-1: a chimeric lysin of intergeneric origin.
    Sheehan MM; García JL; López R; García P
    Mol Microbiol; 1997 Aug; 25(4):717-25. PubMed ID: 9379901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interchange of functional domains switches enzyme specificity: construction of a chimeric pneumococcal-clostridial cell wall lytic enzyme.
    Croux C; Ronda C; López R; García JL
    Mol Microbiol; 1993 Sep; 9(5):1019-25. PubMed ID: 7934908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the C-terminal domain of the lysozyme of Clostridium acetobutylicum ATCC 824 in a chimeric pneumococcal-clostridial cell wall lytic enzyme.
    Croux C; Ronda C; López R; García JL
    FEBS Lett; 1993 Dec; 336(1):111-4. PubMed ID: 7903254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis and biological significance of the cell wall lytic enzymes of Streptococcus pneumoniae and its bacteriophage.
    López R; García JL; García E; Ronda C; García P
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):439-47. PubMed ID: 1362174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric pneumococcal cell wall lytic enzymes reveal important physiological and evolutionary traits.
    Diaz E; López R; Garcia JL
    J Biol Chem; 1991 Mar; 266(9):5464-71. PubMed ID: 1672313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture and domain interchange of the pneumococcal cell wall lytic enzymes.
    López R; García E; García P; García JL
    Dev Biol Stand; 1995; 85():273-81. PubMed ID: 8586189
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin.
    Romero P; López R; García E
    J Bacteriol; 2004 Dec; 186(24):8229-39. PubMed ID: 15576771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxy-terminal deletion analysis of the major pneumococcal autolysin.
    Garcia JL; Diaz E; Romero A; Garcia P
    J Bacteriol; 1994 Jul; 176(13):4066-72. PubMed ID: 7912694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae.
    Frias MJ; Melo-Cristino J; Ramirez M
    J Bacteriol; 2009 Sep; 191(17):5428-40. PubMed ID: 19581370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric phage-bacterial enzymes: a clue to the modular evolution of genes.
    Díaz E; López R; García JL
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):8125-9. PubMed ID: 1978320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The autolysin-encoding gene (lytA) of Streptococcus pneumoniae displays restricted allelic variation despite localized recombination events with genes of pneumococcal bacteriophage encoding cell wall lytic enzymes.
    Whatmore AM; Dowson CG
    Infect Immun; 1999 Sep; 67(9):4551-6. PubMed ID: 10456899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking the evolution of the bacterial choline-binding domain: molecular characterization of the Clostridium acetobutylicum NCIB 8052 cspA gene.
    Sanchez-Beato AR; Ronda C; Garcia JL
    J Bacteriol; 1995 Feb; 177(4):1098-103. PubMed ID: 7860591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional insights into peptidoglycan access for the lytic amidase LytA of Streptococcus pneumoniae.
    Mellroth P; Sandalova T; Kikhney A; Vilaplana F; Hesek D; Lee M; Mobashery S; Normark S; Svergun D; Henriques-Normark B; Achour A
    mBio; 2014 Feb; 5(1):e01120-13. PubMed ID: 24520066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression of gene fragments encoding the choline-binding domain of pneumococcal murein hydrolases.
    Sánchez-Puelles JM; Sanz JM; García JL; García E
    Gene; 1990 Apr; 89(1):69-75. PubMed ID: 1973677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling the structure of the pneumococcal autolytic lysozyme.
    Monterroso B; López-Zumel C; García JL; Sáiz JL; García P; Campillo NE; Menéndez M
    Biochem J; 2005 Oct; 391(Pt 1):41-9. PubMed ID: 15943581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the major pneumococcal autolysin in the atypical response of a clinical isolate of Streptococcus pneumoniae.
    Díaz E; López R; García JL
    J Bacteriol; 1992 Sep; 174(17):5508-15. PubMed ID: 1355082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a lysis module present in a large proportion of bacteriophages infecting Streptococcus thermophilus.
    Sheehan MM; Stanley E; Fitzgerald GF; van Sinderen D
    Appl Environ Microbiol; 1999 Feb; 65(2):569-77. PubMed ID: 9925584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli.
    Diaz E; Munthali M; Lunsdorf H; Holtje JV; Timmis KN
    Mol Microbiol; 1996 Feb; 19(4):667-81. PubMed ID: 8820638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EJ-1, a temperate bacteriophage of Streptococcus pneumoniae with a Myoviridae morphotype.
    Díaz E; López R; García JL
    J Bacteriol; 1992 Sep; 174(17):5516-25. PubMed ID: 1355083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.