BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9185151)

  • 1. The contribution of quantitative confocal laser scanning microscopy in cartilage research: chondrocyte insulin-like growth factor-1 receptors in health and pathology.
    Verschure PJ; Van Marle J; Van Noorden CJ; Van den Berg WB
    Microsc Res Tech; 1997 May; 37(4):285-98. PubMed ID: 9185151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization and quantification of the insulin-like growth factor-1 receptor in mouse articular cartilage by confocal laser scanning microscopy.
    Verschure PJ; van Marle J; Joosten LA; Van den Berg WB
    J Histochem Cytochem; 1994 Jun; 42(6):765-73. PubMed ID: 8189038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphometric characterization of murine articular cartilage--novel application of confocal laser scanning microscopy.
    Stok KS; Müller R
    Microsc Res Tech; 2009 Sep; 72(9):650-8. PubMed ID: 19343775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography.
    Wong M; Wuethrich P; Eggli P; Hunziker E
    J Orthop Res; 1996 May; 14(3):424-32. PubMed ID: 8676256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of wide-field/deconvolution and confocal microscopy in bioengineering. Interest of multi-photon microscopy in the study of articular cartilage.
    Dumas D; Grossin L; Cauchois G; Gentils M; Santus R; Stoltz JF
    Biorheology; 2003; 40(1-3):253-9. PubMed ID: 12454413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of confocal laser scanning microscopy (CLSM) to visualize prolactin (PRL) and PRL mRNA in the normal and estrogen-treated rat pituitary glands using non-fluorescent probes.
    Itoh J; Sanno N; Matsuno A; Itoh Y; Watanabe K; Osamura RY
    Microsc Res Tech; 1997 Oct; 39(2):157-67. PubMed ID: 9361267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent in situ hybridisation on tissue sections: a quantitative approach with confocal laser scanning microscopy.
    Neri TM; Carnevali L; Orlandini G; Gatti R; Scandroglio R; Savi M; Allegri L
    Eur J Histochem; 2000; 44(2):193-8. PubMed ID: 10968368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method allowing DIC imaging in conjunction with confocal microscopy.
    Cody SH; Xiang SD; Layton MJ; Handman E; Lam MH; Layton JE; Nice EC; Heath JK
    J Microsc; 2005 Mar; 217(Pt 3):265-74. PubMed ID: 15725130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans.
    Michels J
    J Microsc; 2007 Jul; 227(Pt 1):1-7. PubMed ID: 17635653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of microscopic techniques (epifluorescence microscopy, CLSM, TPE-LSM) as a basis for the quantitative image analysis of activated sludge.
    Lopez C; Pons MN; Morgenroth E
    Water Res; 2005; 39(2-3):456-68. PubMed ID: 15644254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of placental transport mechanisms: a review.
    Sölder E; Rohr I; Kremser C; Hutzler P; Debbage PL
    Eur J Obstet Gynecol Reprod Biol; 2009 May; 144 Suppl 1():S114-20. PubMed ID: 19297073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence confocal laser scanning microscopy for in vivo imaging of epidermal reactions to two experimental irritants.
    Suihko C; Serup J
    Skin Res Technol; 2008 Nov; 14(4):498-503. PubMed ID: 18937788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlated confocal and intermediate voltage electron microscopy imaging of the same cells using sequential fluorescence labeling, fixation, and critical point dehydration.
    Peachey LD; Ishikawa H; Murakami T
    Scanning Microsc Suppl; 1996; 10():237-45; discussion 245-7. PubMed ID: 9601543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role and content of endogenous insulin-like growth factor-binding proteins in bovine articular cartilage.
    Morales TI
    Arch Biochem Biophys; 1997 Jul; 343(2):164-72. PubMed ID: 9224726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of chondrocyte-matrix interactions in maintaining and repairing articular cartilage.
    Martin JA; Buckwalter JA
    Biorheology; 2000; 37(1-2):129-40. PubMed ID: 10912185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering.
    Guehring T; Urban JP; Cui Z; Tirlapur UK
    Microsc Res Tech; 2008 Apr; 71(4):298-304. PubMed ID: 18189326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of image analysis features and visual morphology in melanocytic skin tumours using in vivo confocal laser scanning microscopy.
    Lorber A; Wiltgen M; Hofmann-Wellenhof R; Koller S; Weger W; Ahlgrimm-Siess V; Smolle J; Gerger A
    Skin Res Technol; 2009 May; 15(2):237-41. PubMed ID: 19622133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal microscopy in biomedical research.
    Rigby PJ; Goldie RG
    Croat Med J; 1999 Sep; 40(3):346-52. PubMed ID: 10411961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength effects on contrast observed with reflectance in vivo confocal laser scanning microscopy.
    Luedtke MA; Papazoglou E; Neidrauer M; Kollias N
    Skin Res Technol; 2009 Nov; 15(4):482-8. PubMed ID: 19832962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.