BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9185166)

  • 1. Analysis of molecular forms and pharmacological properties of acetylcholinesterase in several mosquito species.
    Bourguet D; Roig A; Toutant JP; Arpagaus M
    Neurochem Int; 1997 Jul; 31(1):65-72. PubMed ID: 9185166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera:Culicidae).
    Bourguet D; Raymond M; Fournier D; Malcolm CA; Toutant JP; Arpagaus M
    J Neurochem; 1996 Nov; 67(5):2115-23. PubMed ID: 8863521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duplication of the Ace.1 locus in Culex pipiens mosquitoes from the Caribbean.
    Bourguet D; Raymond M; Bisset J; Pasteur N; Arpagaus M
    Biochem Genet; 1996 Oct; 34(9-10):351-62. PubMed ID: 8978907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila.
    Weill M; Fort P; Berthomieu A; Dubois MP; Pasteur N; Raymond M
    Proc Biol Sci; 2002 Oct; 269(1504):2007-16. PubMed ID: 12396499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical properties, expression profiles, and tissue localization of orthologous acetylcholinesterase-2 in the mosquito, Anopheles gambiae.
    Zhao P; Wang Y; Jiang H
    Insect Biochem Mol Biol; 2013 Mar; 43(3):260-71. PubMed ID: 23267863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Anopheles gambiae and Culex pipiens acetycholinesterase 1 biochemical properties.
    Alout H; Djogbénou L; Berticat C; Chandre F; Weill M
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Jul; 150(3):271-7. PubMed ID: 18455457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical key to eight species of adult Egyptian mosquitoes.
    Farid HA; Gad AM; Salem AM; Kashef AH
    Med Vet Entomol; 1991 Apr; 5(2):183-91. PubMed ID: 1685104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective and irreversible inhibitors of mosquito acetylcholinesterases for controlling malaria and other mosquito-borne diseases.
    Pang YP; Ekström F; Polsinelli GA; Gao Y; Rana S; Hua DH; Andersson B; Andersson PO; Peng L; Singh SK; Mishra RK; Zhu KY; Fallon AM; Ragsdale DW; Brimijoin S
    PLoS One; 2009 Aug; 4(8):e6851. PubMed ID: 19714254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and characterization of the complete acetylcholinesterase gene (Ace1) from the mosquito Aedes aegypti with implications for comparative genome analysis.
    Mori A; Lobo NF; deBruyn B; Severson DW
    Insect Biochem Mol Biol; 2007 Jul; 37(7):667-74. PubMed ID: 17550823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus.
    Alout H; Berthomieu A; Hadjivassilis A; Weill M
    Insect Biochem Mol Biol; 2007 Jan; 37(1):41-7. PubMed ID: 17175445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens.
    Malcolm CA; Bourguet D; Ascolillo A; Rooker SJ; Garvey CF; Hall LM; Pasteur N; Raymond M
    Insect Mol Biol; 1998 May; 7(2):107-20. PubMed ID: 9535157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular divergence of the mitochondrial cytochrome oxidase II gene in three mosquitoes.
    Jinfu W; Chaohui H
    J Am Mosq Control Assoc; 2002 Dec; 18(4):301-6. PubMed ID: 12542187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin.
    Broadwell AH; Baumann P
    Appl Environ Microbiol; 1987 Jun; 53(6):1333-7. PubMed ID: 2886104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta?
    Kim YH; Lee SH
    Insect Biochem Mol Biol; 2013 Jan; 43(1):47-53. PubMed ID: 23168079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes.
    Dadd RH
    J Insect Physiol; 1975 Nov; 21(11):1847-53. PubMed ID: 241769
    [No Abstract]   [Full Text] [Related]  

  • 16. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues.
    Engdahl C; Knutsson S; Fredriksson SÅ; Linusson A; Bucht G; Ekström F
    PLoS One; 2015; 10(10):e0138598. PubMed ID: 26447952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species.
    Coy MR; Tu Z
    Insect Mol Biol; 2007 Aug; 16(4):411-21. PubMed ID: 17506852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the doublesex gene within the Culex pipiens complex suggests regulatory plasticity at the base of the mosquito sex determination cascade.
    Price DC; Egizi A; Fonseca DM
    BMC Evol Biol; 2015 Jun; 15():108. PubMed ID: 26058583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mosquito fauna (Diptera: Culicidae) and seasonal activity in Makka Al Mukarramah Region, Saudi Arabia.
    Alahmed AM; Al Kuriji MA; Kheir SM; Alahmedi SA; Al Hatabbi MJ; Al Gashmari MA
    J Egypt Soc Parasitol; 2009 Dec; 39(3):991-1013. PubMed ID: 20120761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens.
    Labbé P; Berthomieu A; Berticat C; Alout H; Raymond M; Lenormand T; Weill M
    Mol Biol Evol; 2007 Apr; 24(4):1056-67. PubMed ID: 17283366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.