These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
55 related articles for article (PubMed ID: 9185276)
1. Evolution of cell-surface acid phosphatase of Burkholderia pseudomallei. Kondo E; Kurata T; Naigowit P; Kanai K Southeast Asian J Trop Med Public Health; 1996 Sep; 27(3):592-9. PubMed ID: 9185276 [TBL] [Abstract][Full Text] [Related]
2. Effects of tunicamycin on the pH-activity pattern of acid phosphatase in Pseudomonas pseudomallei. Kondo E; Wangroongsaub P; Kanai K Southeast Asian J Trop Med Public Health; 1994 Mar; 25(1):144-51. PubMed ID: 7529943 [TBL] [Abstract][Full Text] [Related]
3. Specific binding of Burkholderia pseudomallei cells and their cell-surface acid phosphatase to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Kanai K; Suzuki Y; Kondo E; Maejima Y; Miyamoto D; Suzuki T; Kurata T Southeast Asian J Trop Med Public Health; 1997 Dec; 28(4):781-90. PubMed ID: 9656402 [TBL] [Abstract][Full Text] [Related]
4. Demonstration of acid phosphatase activity in antigenic glycoprotein fractions obtained from the culture filtrate of Pseudomonas pseudomallei. Kondo E; Petkanchanapong V; Naigowit P; Kurata T; Kanai K Jpn J Med Sci Biol; 1991; 44(5-6):213-24. PubMed ID: 1725885 [TBL] [Abstract][Full Text] [Related]
5. Separation of antigenic glycoprotein fractions from cell-free homogenate of Pseudomonas pseudomallei and characterization as tyrosine phosphatase. Kondo E; Wangroongsaub P; Naigowit P; Kanai K Southeast Asian J Trop Med Public Health; 1994 Sep; 25(3):436-42. PubMed ID: 7539939 [TBL] [Abstract][Full Text] [Related]
7. Affinity and response of Burkholderia pseudomallei and Burkholderia cepacia to insulin. Kanai K; Kondo E; Kurata T Southeast Asian J Trop Med Public Health; 1996 Sep; 27(3):584-91. PubMed ID: 9185275 [TBL] [Abstract][Full Text] [Related]
8. Use of antigens derived from Burkholderia pseudomallei, B. thailandensis, and B. cepacia in the indirect hemagglutination assay for melioidosis. Gilmore G; Barnes J; Ketheesan N; Norton R Clin Vaccine Immunol; 2007 Nov; 14(11):1529-31. PubMed ID: 17804613 [TBL] [Abstract][Full Text] [Related]
9. Rapid multiplex immunofluorescent assay to detect antibodies against Burkholderia pseudomallei and taxonomically closely related nonfermenters. Iihara H; Niwa T; Shah MM; Nhung PH; Song SX; Hayashi M; Ohkusa K; Itoh Y; Makino S; Ezaki T Jpn J Infect Dis; 2007 Jul; 60(4):230-4. PubMed ID: 17642542 [TBL] [Abstract][Full Text] [Related]
10. Heat-stable and heat-labile components of nonspecific acid phosphatase detected in Pseudomonas pseudomallei. Kondo E; Dejsirilert S; Wejprasit N; Chiewsilp D; Kanai K Jpn J Med Sci Biol; 1991 Apr; 44(2):51-62. PubMed ID: 1720181 [TBL] [Abstract][Full Text] [Related]
11. Comparison by electron microscopy of intracellular events and survival of Burkholderia pseudomallei in monocytes from normal subjects and patients with melioidosis. Puthucheary SD; Nathan SA Singapore Med J; 2006 Aug; 47(8):697-703. PubMed ID: 16865211 [TBL] [Abstract][Full Text] [Related]
12. The identification of surface proteins of Burkholderia pseudomallei. Harding SV; Sarkar-Tyson M; Smither SJ; Atkins TP; Oyston PC; Brown KA; Liu Y; Wait R; Titball RW Vaccine; 2007 Mar; 25(14):2664-72. PubMed ID: 17289218 [TBL] [Abstract][Full Text] [Related]
13. Effects of tunicamycin, mannosamine, and other inhibitors of glycoprotein processing on skeletal alkaline phosphatase in human osteoblast-like cells. Farley JR; Magnusson P Calcif Tissue Int; 2005 Jan; 76(1):63-74. PubMed ID: 15478002 [TBL] [Abstract][Full Text] [Related]
14. Fatty acid profile and acid phosphatase activity of fresh isolates of Pseudomonas pseudomallei. Kondo E; Naigowit P; Phanichruttiwong P; Petkanchanapong W; Chetanachan P; Thirawattanasuk N; Kanai K Jpn J Med Sci Biol; 1991; 44(5-6):195-211. PubMed ID: 1725884 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles. Muangsombut V; Suparak S; Pumirat P; Damnin S; Vattanaviboon P; Thongboonkerd V; Korbsrisate S Arch Microbiol; 2008 Dec; 190(6):623-31. PubMed ID: 18654761 [TBL] [Abstract][Full Text] [Related]
16. Mimotope identification from monoclonal antibodies of Burkholderia pseudomallei using random peptide phage libraries. Na-ngam N; Kalambaheti T; Ekpo P; Pitaksajjakul P; Jamornthanyawat N; Chantratita N; Sirisinha S; Yamabhai M; Thamlikitkul V; Ramasoota P Trans R Soc Trop Med Hyg; 2008 Dec; 102 Suppl 1():S47-54. PubMed ID: 19121687 [TBL] [Abstract][Full Text] [Related]
17. Rapid identification of Burkholderia pseudomallei in blood culture supernatants by a coagglutination assay. Jesudason MV; Balaji V; Sirisinha S; Sridharan G Clin Microbiol Infect; 2005 Nov; 11(11):930-3. PubMed ID: 16216112 [TBL] [Abstract][Full Text] [Related]
18. The bacterial gene lfpA influences the potent induction of calcitonin receptor and osteoclast-related genes in Burkholderia pseudomallei-induced TRAP-positive multinucleated giant cells. Boddey JA; Day CJ; Flegg CP; Ulrich RL; Stephens SR; Beacham IR; Morrison NA; Peak IR Cell Microbiol; 2007 Feb; 9(2):514-31. PubMed ID: 16987331 [TBL] [Abstract][Full Text] [Related]
19. In silico analysis of potential diagnostic targets from Burkholderia pseudomallei. Thompson DB; Crandall K; Harding SV; Smither SJ; Kitto GB; Titball RW; Brown KA Trans R Soc Trop Med Hyg; 2008 Dec; 102 Suppl 1():S61-5. PubMed ID: 19121691 [TBL] [Abstract][Full Text] [Related]
20. [Molecular-genetic approaches to diagnosis and intraspecific typing of causative agents of glanders and melioidosis]. Antonov VA; Iliukhin VI Mol Gen Mikrobiol Virusol; 2005; (2):3-9. PubMed ID: 15954468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]