BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9185336)

  • 1. Nongenetic variation, genetic-environmental interactions and altered gene expression. I. Temperature, photoperiod, diet, pH and sex-related effects.
    Poly WJ
    Comp Biochem Physiol A Physiol; 1997 May; 117(1):11-66. PubMed ID: 9185336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nongenetic variation, genetic-environmental interactions and altered gene expression. III. Posttranslational modifications.
    Poly WJ
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):551-72. PubMed ID: 9406434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley.
    Fowler DB; Breton G; Limin AE; Mahfoozi S; Sarhan F
    Plant Physiol; 2001 Dec; 127(4):1676-81. PubMed ID: 11743112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nongenetic variation, genetic-environmental interactions and altered gene expression. II. Disease, parasite and pollution effects.
    Poly WJ
    Comp Biochem Physiol B Biochem Mol Biol; 1997 May; 117(1):61-74. PubMed ID: 9180015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish take their cue from temperature but not photoperiod for the seasonal plasticity of thermal performance.
    Condon CH; Chenoweth SF; Wilson RS
    J Exp Biol; 2010 Nov; 213(Pt 21):3705-9. PubMed ID: 20952619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions among factors regulating phenological development and acclimation rate determine low-temperature tolerance in wheat.
    Fowler DB; Limin AE
    Ann Bot; 2004 Nov; 94(5):717-24. PubMed ID: 15374834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature and photoperiod as environmental cues affect body mass and thermoregulation in Chinese bulbuls,
    Hu SN; Zhu YY; Lin L; Zheng WH; Liu JS
    J Exp Biol; 2017 Mar; 220(Pt 5):844-855. PubMed ID: 28082615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic flexibility of energetics in acclimated Siberian hamsters has a narrower scope in winter than in summer.
    Boratyński JS; Jefimow M; Wojciechowski MS
    J Comp Physiol B; 2016 Apr; 186(3):387-402. PubMed ID: 26803319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos.
    Swanson D; Zhang Y; Liu JS; Merkord CL; King MO
    J Exp Biol; 2014 Mar; 217(Pt 6):866-75. PubMed ID: 24622893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis.
    Alonso-Blanco C; Gomez-Mena C; Llorente F; Koornneef M; Salinas J; Martínez-Zapater JM
    Plant Physiol; 2005 Nov; 139(3):1304-12. PubMed ID: 16244146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low temperatures counteract short-day induced nitrogen storage, but not accumulation of bark storage protein transcripts in bark of grey poplar (Populus × canescens) trees.
    Wildhagen H; Bilela S; Rennenberg H
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():44-56. PubMed ID: 23279294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.
    Welling A; Moritz T; Palva ET; Junttila O
    Plant Physiol; 2002 Aug; 129(4):1633-41. PubMed ID: 12177476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch.
    Puhakainen T; Li C; Boije-Malm M; Kangasjärvi J; Heino P; Palva ET
    Plant Physiol; 2004 Dec; 136(4):4299-307. PubMed ID: 15563624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of cyclical light/dark-regulated expression of freezing tolerance in young winter wheat plants.
    Skinner DZ; Bellinger B; Hiscox W; Helms GL
    PLoS One; 2018; 13(6):e0198042. PubMed ID: 29912979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae).
    Ansart A; Vernon P; Daguzan J
    Cryobiology; 2001 Jun; 42(4):266-73. PubMed ID: 11748935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature.
    Allard V; Veisz O; Kõszegi B; Rousset M; Le Gouis J; Martre P
    J Exp Bot; 2012 Jan; 63(2):847-57. PubMed ID: 21994169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar.
    Rohde A; Bastien C; Boerjan W
    Tree Physiol; 2011 May; 31(5):472-82. PubMed ID: 21636689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prolonged acclimation to intermediate photoperiod and photo-schedule reversal in photosensitive golden hamsters.
    Jefimow M; Wojciechowski MS; Tegowska E
    J Exp Zool A Comp Exp Biol; 2005 Nov; 303(11):987-97. PubMed ID: 16217806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal acclimation of prairie deer mice.
    Andrews RV; Belknap RW
    Int J Biometeorol; 1993 Dec; 37(4):190-3. PubMed ID: 8112876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of long-term temperature acclimation on thyroid hormone deiodinase function, plasma thyroid hormone levels, growth, and reproductive status of male Atlantic cod, Gadus morhua.
    Cyr DG; Idler DR; Audet C; McLeese JM; Eales JG
    Gen Comp Endocrinol; 1998 Jan; 109(1):24-36. PubMed ID: 9446719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.