BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 9187246)

  • 21. Allosteric control of acetylcholinesterase catalysis by fasciculin.
    Radić Z; Quinn DM; Vellom DC; Camp S; Taylor P
    J Biol Chem; 1995 Sep; 270(35):20391-9. PubMed ID: 7657613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The fasciculin-acetylcholinesterase interaction].
    Marchot P
    J Soc Biol; 1999; 193(6):505-8. PubMed ID: 10783708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of mouse acetylcholinesterase by fasciculin: crystal structure of the complex and mutagenesis of fasciculin.
    Marchot P; Bourne Y; Prowse CN; Bougis PE; Taylor P
    Toxicon; 1998 Nov; 36(11):1613-22. PubMed ID: 9792178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytotoxin antibody-based colourimetric sensor for field-level differential detection of elapid among big four snake venom.
    Kaul S; Sai Keerthana L; Kumar P; Birader K; Tammineni Y; Rawat D; Suman P
    PLoS Negl Trop Dis; 2021 Oct; 15(10):e0009841. PubMed ID: 34634067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fasciculin 2 binds to the peripheral site on acetylcholinesterase and inhibits substrate hydrolysis by slowing a step involving proton transfer during enzyme acylation.
    Eastman J; Wilson EJ; Cerveñansky C; Rosenberry TL
    J Biol Chem; 1995 Aug; 270(34):19694-701. PubMed ID: 7649979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative proteomic analysis of Vietnamese krait venoms: Neurotoxins are the major components in Bungarus multicinctus and phospholipases A2 in Bungarus fasciatus.
    Ziganshin RH; Kovalchuk SI; Arapidi GP; Starkov VG; Hoang AN; Thi Nguyen TT; Nguyen KC; Shoibonov BB; Tsetlin VI; Utkin YN
    Toxicon; 2015 Dec; 107(Pt B):197-209. PubMed ID: 26341420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical analysis of the structure of the peptide fasciculin and its docking to acetylcholinesterase.
    van den Born HK; Radić Z; Marchot P; Taylor P; Tsigelny I
    Protein Sci; 1995 Apr; 4(4):703-15. PubMed ID: 7613468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Allosteric control of acetylcholinesterase activity by monoclonal antibodies.
    Saxena A; Hur R; Doctor BP
    Biochemistry; 1998 Jan; 37(1):145-54. PubMed ID: 9425034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acetylcholinesterase from Bungarus venom: a monomeric species.
    Cousin X; Créminon C; Grassi J; Méflah K; Cornu G; Saliou B; Bon S; Massoulié J; Bon C
    FEBS Lett; 1996 Jun; 387(2-3):196-200. PubMed ID: 8674549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site of fasciculin interaction with acetylcholinesterase.
    Radić Z; Duran R; Vellom DC; Li Y; Cervenansky C; Taylor P
    J Biol Chem; 1994 Apr; 269(15):11233-9. PubMed ID: 8157652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II.
    Kryger G; Harel M; Giles K; Toker L; Velan B; Lazar A; Kronman C; Barak D; Ariel N; Shafferman A; Silman I; Sussman JL
    Acta Crystallogr D Biol Crystallogr; 2000 Nov; 56(Pt 11):1385-94. PubMed ID: 11053835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus.
    Corrêa-Netto C; Junqueira-de-Azevedo Ide L; Silva DA; Ho PL; Leitão-de-Araújo M; Alves ML; Sanz L; Foguel D; Zingali RB; Calvete JJ
    J Proteomics; 2011 Aug; 74(9):1795-809. PubMed ID: 21515432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular cloning of serine proteases from elapid snake venoms.
    Jin Y; Lee WH; Zhang Y
    Toxicon; 2007 Jun; 49(8):1200-7. PubMed ID: 17408712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of snake venom acetylcholinesterase in complex with inhibitory antibody fragment Fab410 bound at the peripheral site: evidence for open and closed states of a back door channel.
    Bourne Y; Renault L; Marchot P
    J Biol Chem; 2015 Jan; 290(3):1522-35. PubMed ID: 25411244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect.
    Szegletes T; Mallender WD; Thomas PJ; Rosenberry TL
    Biochemistry; 1999 Jan; 38(1):122-33. PubMed ID: 9890890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicological effect of herbicides (diuron and bentazon) on snake venom and electric eel acetylcholinesterase.
    Ahmed M; Latif N; Khan RA; Ahmad A
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):229-33. PubMed ID: 22653306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liposome-catalyzed unfolding of acetylcholinesterase from Bungarus fasciatus.
    Shin I; Silman I; Bon C; Weiner L
    Biochemistry; 1998 Mar; 37(13):4310-6. PubMed ID: 9556345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cysteine proteinase inhibitors in elapid and hydrophiid snake venoms.
    Mashiko H; Takahashi H
    Toxicon; 2002 Sep; 40(9):1275-81. PubMed ID: 12220712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron paramagnetic resonance reveals altered topography of the active center gorge of acetylcholinesterase after binding of fasciculin to the peripheral site.
    Sentjurc M; Pecar S; Stojan J; Marchot P; Radić Z; Grubic Z
    Biochim Biophys Acta; 1999 Mar; 1430(2):349-58. PubMed ID: 10082962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway.
    Mallender WD; Szegletes T; Rosenberry TL
    Biochemistry; 2000 Jul; 39(26):7753-63. PubMed ID: 10869180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.