BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

828 related articles for article (PubMed ID: 9187738)

  • 21. Interphase cytogenetics in oncocytic adenomas and carcinomas of the thyroid gland.
    Mazzucchelli L; Burckhardt E; Hirsiger H; Kappeler A; Laissue JA
    Hum Pathol; 2000 Jul; 31(7):854-9. PubMed ID: 10923924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interphase fluorescence in situ hybridization analysis detects a much higher rate of thyroid tumors with clonal cytogenetic deviations of the main cytogenetic subgroups than conventional cytogenetics.
    Drieschner N; Rippe V; Laabs A; Dittberner L; Nimzyk R; Junker K; Rommel B; Kiefer Y; Belge G; Bullerdiek J; Sendt W
    Cancer Genet; 2011 Jul; 204(7):366-74. PubMed ID: 21872823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of formalin-fixed and snap-frozen samples analyzed by multiplex ligation-dependent probe amplification for prognostic testing in uveal melanoma.
    Lake SL; Kalirai H; Dopierala J; Damato BE; Coupland SE
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2647-52. PubMed ID: 22427594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applications of DNA flow cytometry and fluorescence in situ hybridization using a chromosome-specific DNA probe on paraffin-embedded tissue sections of primary malignant melanomas.
    Matsuta M; Imamura Y; Matsuta M; Kon S; Sasaki K
    J Dermatol; 1994 Jan; 21(1):14-9. PubMed ID: 8157816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytogenetic profiling using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH).
    Thompson CT; Gray JW
    J Cell Biochem Suppl; 1993; 17G():139-43. PubMed ID: 8007691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differences in chromosomal aberrations between nodular and superficial spreading malignant melanoma detected by interphase cytogenetics.
    Poetsch M; Woenckhaus C; Dittberner T; Pambor M; Lorenz G; Herrmann FH
    Lab Invest; 1998 Jul; 78(7):883-8. PubMed ID: 9690566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence In Situ Hybridization of Cells, Chromosomes, and Formalin-Fixed Paraffin-Embedded Tissues.
    Alamri A; Nam JY; Blancato JK
    Methods Mol Biol; 2017; 1606():265-279. PubMed ID: 28502006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of chromogenic in situ hybridization for the determination of monosomy 3 in uveal melanoma.
    Gleeson G; Larkin A; Horgan N; Kennedy S
    Arch Pathol Lab Med; 2014 May; 138(5):664-70. PubMed ID: 24786124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of parathyroid neoplasms by interphase fluorescence in situ hybridization.
    Erickson LA; Jalal SM; Harwood A; Shearer B; Jin L; Lloyd RV
    Am J Surg Pathol; 2004 May; 28(5):578-84. PubMed ID: 15105644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FISH analysis in cell touch preparations and cytological specimens from formalin-fixed fetal autopsies.
    Rivasi F; Schirosi L; Bettelli S; Bigiani N; Curatola C
    Diagn Cytopathol; 2008 Sep; 36(9):633-6. PubMed ID: 18677747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence in situ hybridization (FISH) evaluation of chromosomes 6, 7, 9 and 10 throughout human melanocytic tumorigenesis.
    Casorzo L; Luzzi C; Nardacchione A; Picciotto F; Pisacane A; Risio M
    Melanoma Res; 2005 Jun; 15(3):155-60. PubMed ID: 15917696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence in situ hybridization on formalin-fixed, paraffin-embedded tissue sections.
    Zordan A
    Methods Mol Biol; 2011; 730():189-202. PubMed ID: 21431643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interphase cytogenetic studies of human hepatocellular carcinomas by fluorescent in situ hybridization.
    Hamon-Benais C; Ingster O; Terris B; Couturier-Turpin MH; Bernheim A; Feldmann G
    Hepatology; 1996 Mar; 23(3):429-35. PubMed ID: 8617421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence in situ hybridization in paraffin tissue sections: pretreatment protocol.
    Watters AD; Bartlett JM
    Mol Biotechnol; 2002 Jul; 21(3):217-20. PubMed ID: 12102545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitive detection of numerical and structural aberrations of chromosome 1 in neuroblastoma by interphase fluorescence in situ hybridization. Comparison with restriction fragment length polymorphism and conventional cytogenetic analyses.
    Combaret V; Turc-Carel C; Thiesse P; Rebillard AC; Frappaz D; Haus O; Philip T; Favrot MC
    Int J Cancer; 1995 Apr; 61(2):185-91. PubMed ID: 7705946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FISH and FICTION in Lymphoma Research.
    Giefing M; Siebert R
    Methods Mol Biol; 2019; 1956():249-267. PubMed ID: 30779038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence in situ hybridization (FISH) in cytogenetics of leukemia.
    Michalová K
    Folia Biol (Praha); 1996; 42(6):311-4. PubMed ID: 9158941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics.
    Iourov IY; Soloviev IV; Vorsanova SG; Monakhov VV; Yurov YB
    J Histochem Cytochem; 2005 Mar; 53(3):401-8. PubMed ID: 15750029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of interphase fluorescence in situ hybridization on direct hematological bone marrow smears.
    Huegel A; Coyle L; McNeil R; Smith A
    Pathology; 1995 Jan; 27(1):86-90. PubMed ID: 7603763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous phenotyping and genotyping (FICTION-methodology) on paraffin sections and cytologic specimens: a comparison of 2 different protocols.
    Bzorek M; Petersen BL; Hansen L
    Appl Immunohistochem Mol Morphol; 2008 May; 16(3):279-86. PubMed ID: 18301240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.