BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9188087)

  • 1. Detection of the phosphorylcholine epitope in streptococci, Haemophilus and pathogenic Neisseriae by immunoblotting.
    Kolberg J; Høiby EA; Jantzen E
    Microb Pathog; 1997 Jun; 22(6):321-9. PubMed ID: 9188087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal antibodies against Haemophilus influenzae lipopolysaccharides: clone MAHI 4 binding to a pentasaccharide containing terminal beta-Gal residues and clone MAHI 10 recognizing terminal phosphorylated saccharide residues.
    Borrelli S; Jansson PE; Lindberg AA
    Microb Pathog; 1996 Nov; 21(5):307-18. PubMed ID: 8938639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding specificity for four monoclonal antibodies recognizing terminal Gal alpha 1-->4Gal residues in Haemophilus influenzae lipopolysaccharide.
    Borrelli S; Altmann K; Jansson PE; Lindberg AA
    Microb Pathog; 1995 Sep; 19(3):139-57. PubMed ID: 8559043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of immune response to Streptococcus pneumoniae by administration of oral viridans streptococci via phosphorylcholine determinant.
    Miwa Y; Ito HO; Inoue M; Oho T
    FEMS Immunol Med Microbiol; 2005 Mar; 43(3):441-8. PubMed ID: 15708320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monoclonal antibodies to the epitope alpha-Gal-(1-4)-beta-Gal-(1- of Moraxella catarrhalis LPS react with a similar epitope in type IV pili of Neisseria meningitidis.
    Rahman M; Jonsson AB; Holme T
    Microb Pathog; 1998 May; 24(5):299-308. PubMed ID: 9600862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylcholine decoration of lipopolysaccharide differentiates commensal Neisseriae from pathogenic strains: identification of licA-type genes in commensal Neisseriae.
    Serino L; Virji M
    Mol Microbiol; 2000 Mar; 35(6):1550-9. PubMed ID: 10760154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae.
    Weiser JN; Goldberg JB; Pan N; Wilson L; Virji M
    Infect Immun; 1998 Sep; 66(9):4263-7. PubMed ID: 9712776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repertoire diversity of antibody response to bacterial antigens in aged mice. III. Phosphorylcholine antibody from young and aged mice differ in structure and protective activity against infection with Streptococcus pneumoniae.
    Nicoletti C; Yang X; Cerny J
    J Immunol; 1993 Jan; 150(2):543-9. PubMed ID: 8419487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipooligosaccharide epitopes shared among gram-negative non-enteric mucosal pathogens.
    Campagnari AA; Spinola SM; Lesse AJ; Kwaik YA; Mandrell RE; Apicella MA
    Microb Pathog; 1990 May; 8(5):353-62. PubMed ID: 1699109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection against Staphylococcus aureus by antibody to the polyglycerolphosphate backbone of heterologous lipoteichoic acid.
    Theilacker C; Kropec A; Hammer F; Sava I; Wobser D; Sakinc T; Codée JD; Hogendorf WF; van der Marel GA; Huebner J
    J Infect Dis; 2012 Apr; 205(7):1076-85. PubMed ID: 22362863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monoclonal antibodies against Haemophilus lipopolysaccharides: clone DP8 specific for Haemophilus ducreyi and clone DH24 binding to lacto-N-neotetraose.
    Borrelli S; Roggen EL; Hendriksen D; Jonasson J; Ahmed HJ; Piot P; Jansson PE; Lindberg AA
    Infect Immun; 1995 Jul; 63(7):2665-73. PubMed ID: 7790083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mimicry of human glycolipids and glycosphingolipids by the lipooligosaccharides of pathogenic neisseria and haemophilus.
    Harvey HA; Swords WE; Apicella MA
    J Autoimmun; 2001 May; 16(3):257-62. PubMed ID: 11334490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominant cross-reactive antibodies generated during the response to a variety of oral bacterial species detect phosphorylcholine.
    Gmür R; Thurnheer T; Guggenheim B
    J Dent Res; 1999 Jan; 78(1):77-85. PubMed ID: 10065949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monoclonal antibody with specificity for the genus Klebsiella binds to a common epitope located in the core region of Klebsiella lipopolysaccharide.
    Brade L; Podschun R; Brade H
    J Endotoxin Res; 2001; 7(2):119-24. PubMed ID: 11521092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid.
    Theilacker C; Kaczynski Z; Kropec A; Fabretti F; Sange T; Holst O; Huebner J
    Infect Immun; 2006 Oct; 74(10):5703-12. PubMed ID: 16988246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of phosphorylcholine by non-immunoglobulin molecules on mouse B cells.
    Bach MA; Kohler H; Levitt D
    J Immunol; 1983 Jul; 131(1):365-9. PubMed ID: 6863921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylcholine-containing antigens in bacteria from the mouth and respiratory tract.
    Gillespie SH; Ainscough S; Dickens A; Lewin J
    J Med Microbiol; 1996 Jan; 44(1):35-40. PubMed ID: 8544209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Neisseria gonorrhoeae by dot-enzyme immunoassay using monoclonal antibodies.
    Lussier M; Brodeur BR; Winston S
    J Immunoassay; 1989; 10(4):373-94. PubMed ID: 2481688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-reactivity of human immunoglobulin G2 recognizing phosphorylcholine and evidence for protection against major bacterial pathogens of the human respiratory tract.
    Goldenberg HB; McCool TL; Weiser JN
    J Infect Dis; 2004 Oct; 190(7):1254-63. PubMed ID: 15346335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monoclonal antibody against a carbohydrate epitope in lipopolysaccharide differentiates Chlamydophila psittaci from Chlamydophila pecorum, Chlamydophila pneumoniae, and Chlamydia trachomatis.
    Müller-Loennies S; Gronow S; Brade L; MacKenzie R; Kosma P; Brade H
    Glycobiology; 2006 Mar; 16(3):184-96. PubMed ID: 16282606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.